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Lie symmetry reduction of systems of nonlinear reaction-diffusion equation with respect to
one-dimensional algebras is carried out. Some classes of exact solutions of the investigated
equations are found.

1 Introduction

Nonlinear reaction-diffusion equations are widely used in mathematical physics, chemistry and
biology. In the present paper we consider the system of nonlinear diffusion equations of the
following general form

∂u1

∂t
− ∂2

∂x2
(a11u1 + a12u2) = f1(u1, u2),

∂u2

∂t
− ∂2

∂x2
(a21u1 + a22u2) = f2(u1, u2), (1)

where u1 and u2 are functions dependent on t and x; a11, a12, a21, a22 are constant parameters
and a11a22 − a21a12 �= 0.

In [1] a constructive algorithm was proposed for investigation of conditional and classical Lie
symmetries of partial differential equations and classical symmetries of systems of two nonlinear
diffusion equations with 1 + m independent variables t, x1, . . . , xm were described. Namely, all
possible non-linearities f1, f2 and the corresponding group generators were found. We notice
that symmetry properties of nonlinear multidimensional systems of reaction-diffusion equations
were also investigated in papers [2, 3]. In the present paper using the results obtained in [1]
we carry out symmetry reduction of equation (1) with respect to one-dimensional symmetry
algebras. We restrict ourselves to such non-linearities f1 and f2 found in [1] which are defined
up to arbitrary functions.

2 Symmetry reduction of equation (1)

We will not give the detailed calculations but present the operators, ansatzes and corresponding
reduced systems for some nonlinearities f1, f2 found in [1, 3]. We use the following notation:

X0 = α
∂

∂t
+ β

∂

∂x
, D1 = 2t

∂

∂t
+ x

∂

∂x
− 2

k
B̂, B̂ = Babub

∂

∂ua
,

D3 = 2t
∂

∂t
+ x

∂

∂x
− 2

k

(
∂

∂u1
− 2nu1

∂

∂u2

)
, D4 = 2t

∂

∂t
+ x

∂

∂x
− 2

k
pα

∂

∂uα
,

where α and β are arbitrary real coefficients, Bab are elements of the 2× 2 matrix B which will
be specified in the following.
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1. Consider the following system of type (1)

∂u1

∂t
− a

∂2u1

∂x2
= exp

(
k
u2

u1

)
ϕ1u1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= exp

(
k
u2

u1

)
(ϕ1u2 + ϕ2), (2)

where ϕ1 and ϕ2 are arbitrary (but fixed) functions of u1, a11 = a22 = a, a12 = 0, a21 = b.
This system admits the symmetry operator

X = X0 + νD1, where B =
(

0 0
1 0

)
.

The corresponding ansatz be obtained using the Lie algorithms is

u1 = ω1(z), u2 = −2
k

ln(νx + β)ω1(z) + ω2(z), z =
2(νx + β)2

2νt + α
. (3)

Substituting the ansatz (3) into (2) we come to the following reduced equations

2νz2ω̇1 + 2ν2azω̇1 + 8ν2az2ω̈1 = − exp
(

k
ω2

ω1

)
ϕ1ω1,

2νz2ω̇2 +
2ν2a

k
ω̇1 − 8ν2a

k
zω̇1 + 2ν2bzω̇1 + 2ν2azω̇2 + 8ν2bz2ω̈1 + 8ν2az2ω̈2

= − exp
(

k
ω2

ω1

)
(ϕ1ω2 + ϕ2).

In other words the ansatz (3) reduces (2) to the system of ordinary differential equations.
The following results (related to equations found in [1]) are presented more briefly.
2. Equations:

∂u1

∂t
− a

∂2u1

∂x2
+ b

∂2u2

∂x2
= ϕ1u2 + ϕ2u1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= −ϕ1u1 + ϕ2u2,

where ϕ1 and ϕ2 are arbitrary functions of
√

u2
1 + u2

2, a11 = a22 = a, a21 = −a12 = b.
Symmetry:

X = X0 + µB̂, where B =
(

0 −1
1 0

)
.

Ansatz:

u1 = cos
(µ

α
t
)

ω1(z) − sin
(µ

α
t
)

ω2(z), u2 = sin
(µ

α
t
)

ω1(z) + cos
(µ

α
t
)

ω2(z),

z = βt − αx.

Reduced equations:

−µ

α
ω2 + β(aω̇1 − bω̇2) − α2(aω̈1 − bω̈2) = ϕ1ω2 + ϕ2ω1,

µ

α
ω1 + β(bω̇1 + aω̇2) − α2(bω̈1 + aω̈2) = −ϕ1ω1 + ϕ2ω2,

where ϕ1 and ϕ2 are functions of ω2
1 + ω2

2.
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3. Equations:

∂u1

∂t
− a

∂2u1

∂x2
= u1ϕ1,

∂u2

∂t
− b

∂2u2

∂x2
= u2ϕ2,

where ϕ1 and ϕ2 are arbitrary functions of u2

ud
1
, a11 = a, a12 = a21 = 0, a22 = b.

Symmetry:

X = X0 + µB̂, where B =
(

1 0
0 d

)
.

Ansatz:

u1 = exp
(

µ

β
x

)
ω1(z), u2 = exp

(
µd

β
x

)
ω2(z), z = βt − αx.

Reduced equations:

βω̇1 − a

(
µ

β

)2

ω1 + 2αa
µ

β
ω̇1 − α2aω̈1 = ω1ϕ1,

βω̇2 − b

(
µd

β

)2

ω2 + 2αb
µd

β
ω̇2 − α2bω̈2 = ω2ϕ2,

where ϕ1 and ϕ2 are functions of ω2

ωd
1
.

4. Equation:

∂u1

∂t
− a

∂2u1

∂x2
= ϕ1,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
=

u2

u1
ϕ1 + nu2 + ϕ2,

where ϕ1 and ϕ2 are arbitrary functions of u1, a11 = a22 = a, a12 = 0, a21 = b.
Symmetry:

X = X0 + µ exp(nt)B̂, where B =
(

0 0
1 0

)
.

Ansatz:

u1 = ω1(z), u2 =
µ

αn
ω1(z) exp(nt) + ω2(z), z = βt − αx.

Reduced equations:

βω̇1 − α2aω̈1 = ϕ1,

βω̇2 − α2bω̈1 − αaω̈2 =
ω2

ω1
ϕ1 + nω2 + ϕ2,

where ϕ1 and ϕ2 are functions of ω1.
5. Equation:

∂u1

∂t
− a

∂2u1

∂x2
= ϕ1u

k+1
1 ,

∂u2

∂t
− b

∂2u1

∂x2
− a

∂2u2

∂x2
= (ϕ1 lnu1 + ϕ2)uk+1

1 ,

where ϕ1 and ϕ2 are arbitrary functions of u1 exp
(
−u2

u1

)
, a11 = a22 = a, a12 = 0, a21 = b.

Symmetry:

X = X0 + νD1, where B =
(

1 0
1 1

)
.
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Ansatz:

u1 = (2νt + α)−
1
k ω1(z), u2 = (2νt + α)−

1
k

(
ω2(z) − 1

k
ln(2νt + α)ω1(z)

)
,

z =
2(νx + β)2

2νt + α
.

Reduced equations:

2ν

k
ω1 + 2νzω̇1 + 8ν2azω̈1 = −ωk+1

1 ϕ1,

2ν

k
ω2 + 2νzω̇2 +

2ν

k
ω1 + 8ν2bzω̈1 + 8ν2azω̈2 = −(ϕ1 lnω1 + ϕ2)ωk+1

1 ,

where ϕ1 and ϕ2 are functions of ω1 exp
(
−ω2

ω1

)
.

3 Conditional symmetry and exact solutions

Thus we presented reductions of equations (1) using their classical symmetry found in [1]. In this
section we present exact solutions of equations (1) found by conditional symmetry reduction.
We use the same scheme of presentation as in Section 2.

1. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2, (4)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
− 3

x + k1

∂

∂x
− 3

(x + k1)2

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = (x + k1)ω(z), z =
1
2
x2 + k1x + 3t

reduces equation (4) to the system:

ω̈1 + ϕ1ω
3
1 = 0, ω̈2 + ϕ2ω

3
2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
Depending on the form of the functions ϕ1, ϕ2, we receive different solutions of the system.
1) ϕ1 = a > 0, ϕ2 = b < 0, where a and b are constants:

u1(x, t) =
√

2a

2a
(x + k1) sd

(
1
2
x2 + k1x + 3t;

1
2

√
2
)

,

u2(x, t) = −
√−2b

b
(x + k1) ds

(
1
2
x2 + k1x + 3t;

1
2

√
2
)

.

2) ϕ1 = a > 0, ϕ2 = 0:

u1(x, t) =
√

2a

2a
(x + k1) sd

(
1
2
x2 + k1x + 3t;

1
2

√
2
)

,

u2(x, t) = (x + k1)
[(

1
2
x2 + k1x + 3t

)
C1 + C2

]
.
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2. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1 − 2µ2u1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2 − 2µ2u2, (5)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
+ 3µ tan(µx + k1)

∂

∂x
− 3µ2 sec2(µx + k1)

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = cos(µx + k1) exp
(−3µ2t

)
ω(z), z = sin(µx + k1) exp(−3µ2t)

reduces equation (5) to the system:

µ2ω̈1 + ω3
1ϕ1 = 0, µ2ω̈2 + ω3

2ϕ2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
Setting more particular form for the functions ϕ1, ϕ2, we get the following solutions of the

reduced system.
1) ϕ1 = a > 0, ϕ2 = b > 0:

u1(x, t) =
µ
√

2a

2a
cos(µx + k1) exp

(−3µ2t
)
sd

[
sin(µx + k1) exp

(−3µ2t
)
;
1
2

√
2
]

,

u2(x, t) =
µ
√

2b

2b
cos(µx + k1) exp

(−3µ2t
)
sd

[
sin(µx + k1) exp

(−3µ2t
)
;
1
2

√
2
]

.

2) ϕ1 = a < 0, ϕ2 = b > 0:

u1(x, t) = −µ
√−2a

a
cos(µx + k1) exp

(−3µ2t
)
ds

[
sin(µx + k1) exp

(−3µ2t
)
;
1
2

√
2
]

,

u2(x, t) =
µ
√

2b

2b
cos(µx + k1) exp

(−3µ2t
)
sd

[
sin(µx + k1) exp

(−3µ2t
)
;
1
2

√
2
]

.

3. Equation:

∂u1

∂t
− ∂2u1

∂x2
= u3

1ϕ1 + 2µ2u1,
∂u2

∂t
− ∂2u2

∂x2
= u3

2ϕ2 + 2µ2u2, (6)

where ϕ1 and ϕ2 are arbitrary functions of u2
u1

.
Conditional symmetry:

X =
∂

∂t
− 3µ coth(µx + k1)

∂

∂x
− 3µ2 csc h2(µx + k1)

(
u1

∂

∂u1
+ u2

∂

∂u2

)
.

The ansatz

u = sinh(µx + k1) exp
(
3µ2t

)
ω(z), z = cosh(µx + k1) exp

(
3µ2t

)
reduces equation (6) to the system:

µ2ω̈1 + ω3
1ϕ1 = 0, µ2ω̈2 + ω3

2ϕ2 = 0,

where ϕ1 and ϕ2 are functions of ω2
ω1

.
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We present the obtained results for some functions ϕ1 and ϕ2.
1) ϕ1 = a < 0, ϕ2 = b < 0:

u1(x, t) = −µ
√−2a

a
sinh(µx + k1) exp

(
3µ2t

)
ds

[
cosh(µx + k1) exp

(
3µ2t

)
;
1
2

√
2
]

,

u2(x, t) = −µ
√−2b

b
sinh(µx + k1) exp

(
3µ2t

)
ds

[
cosh(µx + k1) exp

(
3µ2t

)
;
1
2

√
2
]

.

2) ϕ1 = 0, ϕ2 = b > 0:

u1(x, t) = sinh(µx + k1) exp
(
3µ2t

) [
C1 cosh(µx + k1) exp

(
3µ2t

)
+ C2

]
,

u2(x, t) =
µ
√

2b

2b
sinh(µx + k1) exp

(
3µ2t

)
sd

[
cosh(µx + k1) exp

(
3µ2t

)
;
1
2

√
2
]

.

Besides for equation

ut − uxx = −u2,

we got the following solutions

u =
(48 − 12

√
6)x2 + (48 − 12

√
6)k1x + 40(36 − 15

√
6)t + (24 − 12

√
6)k2 + 6k2

1

[x2 + k1x + 2(15 − 5
√

6)t + k2]2
,

and

u =
(48 + 12

√
6)x2 + (48 + 12

√
6)k1x + 40(36 + 15

√
6)t + (24 + 12

√
6)k2 + 6k2

1

[x2 + k1x + 2(15 + 5
√

6)t + k2]2
.

Thus we presented reduced equations and exact solutions for some of nonlinear reaction-
diffusion equations whose symmetry was studied in [1, 3]. We plan to extend our results to all
systems described in [3].
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