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The magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion
and thereafter moves with constant velocity in a non-Newtonian power law fluid of infinite
extent is studied. The solution of this highly non-linear problem is obtained by means
of the transformation group theoretic approach. The one-parameter group transformation
reduces the number of independent variables by one and the governing partial differential
equation with the boundary conditions reduce to an ordinary differential equation with the
appropriate boundary conditions. Effect of the parameters and time on the velocity has
been studied and the results are plotted.

1 Introduction

An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given
an impulsive motion and thereafter moves with constant velocity in a non-Newtonian power
law fluid of infinite extent. We will study the non-stationary flow of an electrically conducting
non-Newtonian fluid of infinite extent in a transverse external magnetic field. The rheological
model of this fluid is given by the well-known expression for a power law fluid [13]

τij = −pδij + k
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where τij is the shear stress, p is the pressure, δij is the Kronecker symbol, k the coefficient of
consistency, I2 the second strain rate invariant, eij the strain rate tensor and n is a parameter
characteristic of the non-Newtonian behavior of the fluid.

For n = 1, the behavior of the fluid is Newtonian, for n > 1, the behavior is dilatant and for
0 < n < 1, the behavior is pseudo-plastic.

The equation of motion of the semi-infinite flat plate in the infinite power law non-Newtonian
fluid after an impulsive end loading and maintaining constant velocity thereafter is
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where u(y, t) is the velocity of the fluid flow in the horizontal direction, V is the steady state
velocity of the plate, t is the time, y is the coordinate normal to the plate, n is constant,
γ

(
= k

ρ

)
is constant, k is the coefficient of consistency, ρ is the density of the fluid, M

(
= σµ2

ρ

)
is constant, σ is the magnetic conductivity, µ is the magnetic permeability and H is the magnetic
field strength and is function of time H = H(t).
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The solution of this highly non-linear problem is obtained by means of the transformation
group theoretic approach. The one-parameter group transformation reduces the number of
independent variables by one and the governing partial differential equation with the boundary
conditions reduce to an ordinary differential equation with the appropriate boundary conditions.
Effect of the parameters M , w (= γV n−1), n and time t on the velocity u(y, t) has been studied
and the results are plotted.

Fluids that obey Newton’s law of viscosity are called Newtonian fluids.
Newton’s law of viscosity is τ = µdu

dy , where τ is the shear stress and µ is the viscosity. Not
all fluids follow the Newtonian stress-strain relation. Some fluids, such as “Ketchup” are “shear-
thinning”; that is the coefficient of resistance decreases with increasing strain rate. Fluids that do
not follow the Newtonian relation are called non-Newtonian fluids. Viscosity of non-Newtonian
fluids is a function of the strain rate [8].

In 1970, Sapunkov [11] studied non-Newtonian flow of an electrically conducting fluid. He
obtained approximate solution to the problem solved in this paper but only in the special case
of very strong or very weak magnetic fields. The solution was obtained only for a power law
fluid for n = 2. In 1971, Vujanovic [12] obtained approximate solution by means of a new and
effective variational method. In 1972, Vujanovic, Strauss and Djukic [13] used a new variational
principle. This new principle allows one to obtain the solution in a straightforward manner. The
mathematical technique used in the present analysis is the one-parameter group transformation.
The group methods, as a class of methods, which lead to reduction of the number of independent
variables, were first introduced by Birkhoff [4] in 1948, where he made use of one-parameter
transformation groups. In 1952, Morgan [10] presented a theory, which has led to improvements
over earlier similarity methods. The method has been applied intensively by Abd-el-Malek et
al. [1, 2, 5, 7], Ames [3], Morgan and Gaggioli [9] and A.J.A. Morgan [10]. In this work, we
present a general procedure for applying a one-parameter group transformation to the Raylrigh
problem for a power law non-Newtonian conducting fluid.

Under the transformation, the partial differential equation with boundary conditions is re-
duced to an ordinary differential equation with the appropriate corresponding conditions. The
equation is then solved numerically using non-linear finite difference method applied to the non
linear second order boundary value problem [6] to calculate approximated value of the velocity
of the fluid u(y, t).

The fluid studied here is assumed to be incompressible and such that the electric and polari-
zation effects can be neglected.

2 Formulation of the problem and the governing equation

Consider the equation of motion of the semi-infinite flat plate in the infinite power law non-
Newtonian fluid (Rayleigh problem) of the form:
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with the boundary conditions

(i) u(0, t) = V, t > 0,

(ii) u(∞, t) = 0, t > 0

and initial condition

u(y, 0) = 0, y > 0.
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Equation (1) can be written as:
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− nγ
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)n−1 (
∂2u

∂y2

)
+ MH2u = 0. (2)

Assume

u(y, t) = V F (y, t), (3)

where F (y, t) is unknown function and its proper form will be determined later on.
Substitution from (3) into (2) yields
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which can be written as:
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with the boundary conditions

(i) F (0, t) = 1, t > 0, (5)
(ii) F (∞, t) = 0, t > 0 (6)

and initial condition

F (y, 0) = 0, y > 0. (7)

3 Solution of the problem

Our method of solution depends on the application of a one-parameter group transformation to
the partial differential equation (4). Under this transformation the two independent variables
will be reduced by one and the differential equation (4) transforms into an ordinary differential
equation.

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter a of the
form:

y = hy(a)y + ky, t = ht(a)t + kt, F = hF (a)F + kF , H = hH(a)H + kH , (8)

where h’s and k’s are real-valued and at least differentiable in the real argument a.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives of F and H are obtained
from G via chain-rule operations:

Si =
[
hS

hi

]
Si, Sij =

[
hS

hihj

]
Sij , i = y, t, j = y, t, (9)

where S stands for F .
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Equation (4) is said to be invariantly transformed, for some function A(a) whenever:{
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Substitution from (8) and (9) into (10) yields
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The invariance of (11) implies

kH = kF = 0, and
hF

ht
=

(
hF

)n

(hy)n+1 =
(
hH

)2
hF = A(a).

The invariance of the auxiliary conditions (5)–(7) implies that

hF = 1, ky = kt = 0,

which yields

hy =
(
ht

) 1
n+1 , hH =

1√
ht

.

Finally, we get the one-parameter group G, which transforms invariantly the differential
equation (4) and the auxiliary conditions (5)–(7).

The group G is of the form:

y =
(
ht

) 1
n+1 y, t = htt, F = F, H =

(
1√
ht

)
H. (12)

3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an ordinary
differential equation.Then we have to proceed in our analysis to obtain a complete set of absolute
invariants. If η ≡ η(y, t) is the absolute invariant of the independent variables then,

gj(y, t, F, H) = Ψj [η(y, t)] , j = 1, 2,

are the two absolute invariants corresponding to F and H.
The application of a basic theorem in group theory, see Moran and Gaggioli [9], states that:

a function g(y, t, F, H) is an absolute invariant of a one-parameter group if it satisfies the fol-
lowing first-order linear differential equation:

4∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, Si ≡ y, t, F, H, (13)

where

αi =
∂hSi

∂a

(
a0

)
and βi =

∂kSi

∂a

(
a0

)
, i = 1, 2, 3, 4 (14)

and a0 denotes the value of “a” which yields the identity element of the group G.
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At first, we seek the absolute invariant of the independent variables. Owing to equation (13),
η(y, t) is an absolute invariant if it satisfies the following first-order linear differential equation

(α1y + β1)
∂η

∂y
+ (α2t + β2)

∂η

∂t
= 0. (15)

Since ky = kt = 0, and according to the definition of the β’s then β1 = β2 = 0.
Now, equation (15) may be rewritten in the form,

α1y
∂η

∂y
+ α2t

∂η

∂t
= 0.

Applying separation of variables method, one can be obtain a solution in the form,

η = yt−β , where β =
α1

α2
. (16)

The second step is to obtain the absolute invariants of the dependent variables F and H.
By a similar analysis, using equations (12), (13) and (14), we get

F (y, t) = φ(η), (17)

and the second absolute invariant is

H(t) = q(t). (18)

4 The reduction to an ordinary differential equation

Using a substitution from (16)–(18) into equation (4), we get

[
−βyt−(β+1)

] dφ

dη
− nγV n−1

(
t−β dφ

dη

)n−1 (
t−2β d2φ

dη2

)
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from which we get

nγV n−1

(
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) (
dφ
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]
+ βη

dφ

dη
− Mtq2φ = 0. (19)

For (19) to be reduced to an ordinary differential equation in one variable η, it is necessary
that the coefficients should be constants or functions of η only. Thus

q(t) =
E√
t
, β =

1
n + 1

. (20)

Hence, equation (19) will be,

nw

(
d2φ

dη2

) (
dφ

dη

)n−1

+ βη
dφ

dη
− Nφ = 0, (21)

where N
(
= E2M

)
and w

(
= γV n−1

)
are constants.

Under the similarity variable η, the boundary conditions (5)–(7) are

φ(0) = 1, φ(∞) = 0.
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Figure 1. Effect of N on the normalized velo-
city for n = 1, w = 0.1 and t = 1.

Figure 2. Effect of w on the normalized velocity
for n = 1, N = 3 and t = 1.

5 Numerical solution

5.1 Study the effect of N

Consider n = 1, w = 0.1 and t = 1. From equation (20) β = 1
2 , which yields η = y√

t
.

Equation (21) will be(
d2φ

dη2

)
+ 5η

dφ

dη
− 10Nφ = 0.

The result for different values of N is plotted in Fig. 1.

5.2 Study the effect of w

Consider n = 1, N = 3 and t = 1. From equation (20) β = 1
2 which yields η = y√

t
.

Equation (21) will be

w

(
d2φ

dη2

)
+

η

2
dφ

dη
− 3φ = 0.

The result for different values of w is plotted in Fig. 2.

5.3 Study the effect of t

Consider n = 1, N = 3 and w = 0.1. From equation (20) β = 1
2 which yields η = y√

t
.

Equation (21) will be(
d2φ

dη2

)
+ 5η

dφ

dη
− 30φ = 0.

The result for different values of t is plotted in Fig. 3.

5.4 Study the effect of n

Consider N = 3, t = 1 and w = 0.1. Equation (21) will be

n

(
d2φ

dη2

)
+ 10βη

dφ

dη
− 30φ = 0.

The result for different values of n is plotted in Fig. 4.
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Figure 3. Effect of time t on the normalized
velocity for n = 1, N = 3 and w = 0.1.

Figure 4. Effect of n on the normalized velocity
for N = 3, t = 1 and w = 0.1.

6 Results and discussion

The methods for obtaining similarity transformation were classified into (a) direct methods and
(b) group-theoretic methods. The direct methods such as separation of variables do not invoke
group invariance. It is fairy straightforward and simple to apply. Group-theoretic methods
on the other hand are mathematically more elegant, and the important concept of invariance
under a group of transformations is always invoked. In some group-theoretic procedures such
as the Birkhoff–Morgan method and the Hellums–Churchill, method the specific form of the
group is assumed a priori. On the other hand, procedure such as the finite group method of
Moran–Gaggioli is deductive. In this procedure, a general group of transformations is defined
and similarity solutions are systematically deduced. The Rayleigh problem for a power law
non-Newtonian conducting fluid, which is given by equation (1), is solved using group-theoretic
method.

According to Fig. 1, the velocity of the fluid flow increases as the constant N decreases.
The constant N is a property of the fluid, it depends on the density of the fluid, the magnetic
conductivity and the magnetic permeability. According to Fig. 2, the velocity of the fluid flow
increases as γ

(
= k

ρ

)
increases, where γ is constant for the same fluid, since the studied fluid is

assumed to be incompressible, where k is the coefficient of consistency and ρ is the density of
the fluid. According to Fig. 3, the velocity of the fluid flow increases with increase of time.

We studied two cases for constant n, as shown in Fig. 4.
For n = 1, the behavior of the fluid is Newtonian. For n > 1, the behavior of the fluid is

dilatant.
Conditional symmetries, contact symmetries and the classical Lie approach will lead better

reductions and more solutions to the differential equations only but not for the initial and
boundary value problems, since the given conditions limit the reduction.
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