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It is known that the algebra D(V )G of G-invariant differential operators corresponding to
a G-module V of a complex reductive group G is commutative if and only if V is a sphe-
rical G-module. In the present work we study the structure of D(V )G for G-modules with
spherical orbits. It is proved that the centralizer Z(V )G of the subalgebra k[V ]G in D(V )G

is commutative. Also a characterization of actions with spherical orbits in terms of the
reduced action is obtained.

1 Multiplicity-free representations and spherical varieties

Let G be a connected reductive algebraic group defined over an algebraically closed field of zero
characteristic, and (ρ, V ) be a finite-dimensional representation of the group G. The induced
representation of G on the algebra of polynomials k[V ] is given by the formula (g ∗ f)(v) :=
f

(
ρ

(
g−1

)
v
)

for any g ∈ G, f ∈ k[V ], v ∈ V . It is well known that k[V ] as a G-module has the
isotypic decomposition

k[V ] = ⊕λ∈Ξ+(G)k[V ]λ,

where Ξ+(G) is the semigroup of dominant weights of G and k[X]λ is the sum of all irreducible
G-submodules in k[V ] with the highest weight λ.

Definition 1. A representation (ρ, V ) is called multiplicity-free if for any λ ∈ Ξ+(G) such that
k[V ]λ �= 0 the G-module k[V ]λ is irreducible. We say in this case that the G-module k[V ] is
multiplicity-free.

A complete list of multiplicity-free irreducible linear actions of connected reductive groups
obtained by V. Kac [1, Theorem 3] is as follows:

(1) SLn, Spn, SOn ⊗ k∗, S2GLn, Λ2SLn (for n odd), Λ2GLn (for n even), SLm ⊗ SLn (for
m �= n), GLn ⊗ SLn, GL2 ⊗ Spn, GL3 ⊗ Sp3, GL4 ⊗ Sp4, SLn ⊗ Sp4 (for n > 4), Spin7 ⊗ k∗,
Spin9 ⊗ k∗, Spin10, G2 ⊗ k∗, E6 ⊗ k∗.

(2) G ⊗ k∗ for all semisimple groups G from list (1).

Here k∗ is the multiplicative group of the field k considered as a one-dimensional algebraic
group. The linear group Λ2SLn is the image of SLn under the representation in the second
exterior power of the tautological representation, and S2SLn is the same thing with respect to
the second symmetric power.

A classification of reducible multiplicity-free representations was obtained independently by
C. Benson and G. Ratkliff [2], and by A. Leahy [3].

Multiplicity-free representations form a very restricted class of representations. Nevertheless
they are very important due to Roger Howe’s philosophy that every “nice” result in the invariant
theory of particular representations can be traced back to a multiplicity-free representation.
For example, all of Weyl’s first and second fundamental theorems can be explained by some
multiplicity freeness results. Some other examples we shall discuss below.
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Let B be a Borel subgroup of G.

Definition 2. A normal algebraic variety X with regular G-action (and the action G : X itself)
is said to be spherical if there exists a point x ∈ X such that the orbit Bx is open in X.

Denote by k(X) the field of rational functions on a variety X and by k(X)L (resp. k[X]L)
the subfield (resp. the subalgebra) of L-fixed elements for any subgroup L ⊂ G. By Rosenlicht’s
theorem [4, 2.3], the G-variety X is spherical if and only if k(X)B = k.

Theorem 1 ([5]). Suppose that X is a normal affine variety. Then an action G : X is spherical
if and only if the G-module k[X] is multiplicity-free.

In particular, multiplicity-free representations are in the natural one-to-one correspondence
with spherical linear actions.

For more information on interconnections between spherical actions and representation theo-
ry, symplectic geometry, classical mechanics and so on, see the recent survey [6].

2 Representations with spherical orbits

In this section we consider a generalization of the notion of spherical action.

Definition 3. Let X be an irreducible algebraic variety. An action G : X is called an action
with spherical orbits if there exists an open susbet X0 ⊂ X such that for any x ∈ X0 the orbit
Gx is a spherical G-variety.

Below we list some basic facts about actions with spherical orbits.
(1) Any spherical actions is an action with sperical orbits.
(2) Any trivial G-actions is an action with spherical orbits.
(3) Rosenlicht’s theorem implies that an action G : X is an action with spherical orbits if

and only if k(X)G = k(X)B.
(4) It is shown in [7, Corollary 1] that for an action with spherical orbits any G-orbit is

spherical.
(5) Let G1 : X1 and G2 : X2 be actions with spherical orbits. Then the action (G1 × G2) :

(X1 × X2) is an action with spherical orbits.

Now we consider a fragment of a classification of representations with spherical orbits [8].

Definition 4. A G-module V is indecomposable if there exist no proper decompositions G =
G1 ×G2 and V = V1 ⊕ V2 such that (g1, g2) ∗ (v1, v2) = (g1v1, g2v2) for any g = (g1, g2) ∈ G and
any v = (v1, v2) ∈ V .

By property (5), it is sufficient to classify indecomposable representations with spherical
orbits. In Tables 1 and 2 all indecomposable representations with spherical orbits (but non-
spherical!) for connected semisimple groups are indicated. Table 1 contains representations
with a one-dimensional quotient (i.e., k[V ]G = k[q1]), and Table 2 contains representations with
a two-dimensional quotient (i.e., k[V ]G = k[q1, q2]). (Here qi are basic invariants.) There is
no indecomposable representations with spherical orbits and a higher-dimensional quotient, for
more details see [8].

Comments to the Tables. In the column “weights” the highest weights of the G-module
are indicated. For the group G1 × G2 the weight φ ⊗ ψ corresponds to the tensor product of
simple G1- and G2-modules with highest weights φ and ψ respectively. The symbol + denotes
a direct sum of modules. If G is the product of several simple groups, then their fundamental
weights are denoted successively by letters φi, ψi and τi.
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Table 1.

G weights dim V

0 {e} 0 1

1 Λ2SL2n φ2 2n2 − n

2 S2SLn 2φ1 n(n + 1)/2

3 SOn, n > 2 φ1 n

4 Spin7 φ3 8

5 Spin9 φ4 16

6 G2 φ1 7

7 E6 φ1 27

8 SLn, n > 2 φ1 + φn−1 2n

9 SL2n+1 φ1 + φ2 (2n + 1)(n + 1)

10 SL2n φ1 + φ2 n(2n + 1)
φ1 + φ2n−2

11 SLn × SLn φ1 ⊗ φ1 n2

12 SL2 × Sp2n φ1 ⊗ φ1 4n

13 SL4 × Sp4 φ1 ⊗ φ1 16

14 SLn × SL2 × Sp2m, n > 2, m ≥ 1 φ1 ⊗ ψ1 + ψ1 ⊗ τ1 2(n + 2m)

Table 2.

G weights dim V

1 SO8 φ1 + φ3 16

2 Sp2n × SL2 × Sp2m, n,m ≥ 1 φ1 ⊗ ψ1 + ψ1 ⊗ τ1 4(m + n)

3 Invariant differential operators

Let X be an affine variety, and set A = k[X]. We define the algebra of (algebraic) differential
operators on A and X as follows: If P ∈ Endk(A) and a ∈ A, then [P, a] denotes the usual
commutator: [P, a](b) = P (ab) − a(P (b)), b ∈ A. Define Dn(A) = 0 for n < 0, and for n ≥ 0
inductively define:

Dn(A) = {P ∈ Endk(A) | [P, a] ∈ Dn−1(A) for all a ∈ A}.
Clearly, D0(A) ∼= A acting on itself by multiplication. Note that Dn(A) ⊂ Dn+1(A) for all n,
and we define D(A) := ∪nDn(A). Now we set Dn(X) := Dn(A), and similarly for D(X). We
call D(X) the algebra of differential operators on X.

Suppose that X = kn, so that A = k[x1, . . . , xk]. Then D(X) is the kth Weyl algebra
Wk, i.e., the noncommutative algebra k < x1, . . . , xk, ∂1, . . . , ∂k > generated by the xi and the
∂j := ∂/∂xj with there usual commutation relations.

Now let X be an affine G-variety, where G is complex reductive. The group G acts rationally
on k[X] and D(X) [9, § 3]. Denote by D(X)G the algebra of G-invariant differential operators.

We shall need the following well-known result.

Proposition 1. If X is a spherical G-variety, then the algebra D(X)G is commutative.
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Proof. By Schur’s Lemma, any endomorphism T of k[X] which commutes with G must preserve
each isotypic component k[V ]λ. Further, the restriction of T to a given component must be
a scalar, again by Schur’s lemma. Hence D(X)G is a subalgebra of the multiplication algebra
on the set of isotypic components, and so is abelian. �

There is a beautiful characterization of multiplicity-free representations in terms of invariant
differential operators.

Theorem 2 ([10, Proposition 7.1]). The algebra D(V )G is commutative if and only if the
representation (ρ, V ) is multiplicity-free.

Moreover, for multiplicity-free representations the algebra D(V )G is isomorphic to a polyno-
mial algebra, see [11] and [12].

The main purpose of this work is to obtain an analogous characterization for representations
with spherical orbits.

4 Reduced actions and the algebra Z(X)G

Let X be an affine variety and G be a reductive algebraic group. The algebra k[X]G is finitely
generated, and there is a canonical morphism πX,G (or just πG) : X → X//G, where X//G is the
affine variety corresponding to k[X]G and π∗

G is the inclusion k[X]G ⊂ k[X]. The morphism πG

is surjective and induces a one-to-one correspondence between the closed G-orbits in X and the
points of X//G, see [4, 4.4].

To any action G : X one can canonically associate an action without non-constant invariants
over some field of algebraic functions [13].

Namely, denote by K the field of quotients Qk[X]G of k[X]G and by K its algebraic closure.
Let Xred be the spectrum of the K-algebra K[Xred] = K ⊗k[X]G k[X]. This is an irreducible
affine variety over K defined over K, with K[Xred] = K ⊗k[X]G k[X]G. Its dimension equals

dim Xred = dimX − dimX//G, (1)

which is the dimension of a generic fiber of the quotient morphism πG : X → X//G.
The action of G on k[X] is k[X]G-linear and hence can be extended to an action of G(K) on

K[Xred], which, in its turn, can be extended to an action of G(K) on K[Xred]. This gives rise
to an action of G(K) on Xred defined over K. This action is called reduced action.

Proposition 2. The reduced action is spherical if and only if the following conditions hold:
1) the action G : X is an action with spherical orbits;
2) there exists an open dense subset X0 ⊂ X such that for any points x1, x2 ∈ X0 with

Gx1 �= Gx2 there is f ∈ k[X]G such that f(x1) �= f(x2) (i.e. generic G-orbits can be separated
by invariants).

Proof. We follow the proof of [13, Proposition 4]. Elements of K can be thought as algebraic
functions on Y = X//G, and points of Xred as algebraic mappings φ : Y → X such that
πG ◦ φ = id. We may assume that G ⊂ GLn(k) and X is a G-invariant closed subvariety of kn

(see, e.g., [4]). Denote by b a Borel subalgebra in the Lie algebra g of the group G. Let us think
elements of b(K) as algebraic mappings ξ : Y → b. The tangent algebra of the stabilizer B(K)φ

is defined by the linear equations

ξ(y)φ(y) = 0 (2)

over K. For a generic point y ∈ Y they turn into linear equations defining the tangent algebra
of the stabilizer Bφ(y) over k.
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Obviously, the functional rank of system (2) is the maximum of the ranks of its specializations.
Since all φ(Y ) do not belong to a proper closed subvariety of X, we obtain that the dimension
of a generic stabilizer for the action B(K) : Xred is equal to that for the action B : X.

By Rosenlicht’s theorem, the dimension of a generic B-orbit on X is equal to dimX −
tr.deg k(X)B. By (1), the action G(K) : Xred is spherical if and only if

tr.deg k(X)B = dim X//G = tr.deg Qk[X]G. (3)

Note that Qk[X]G ⊆ k(X)G ⊆ k(X)B. Hence (3) is equivalent to tr.deg Qk[X]G = tr.deg k(X)G

= tr.deg k(X)B. The second equality is the condition 1) of Proposition 2. By [4, 3.2], the first
equality means that generic G-orbits can be separated by invariants. �

Corollary 1. Suppose that G : V is a linear action of a semisimple group G. Then the reduced
action G(K) : V red is spherical if and only if G : V is an action with spherical orbits.

Proof. By [4, Theorem 3.3], for a semisimple group action on a factorial variety the condition
Qk[X]G = k(X)G holds automatically. �

Consider the centralizer of k[X]G in D(X)G:

Z(X)G =
{
D ∈ D(X)G | D(ab) = aD(b) for any a ∈ k[X]G, b ∈ k[X]

}
.

Clearly, k[X]G ⊂ Z(X)G. We are going to show that Z(X)G contains differential operators
of positive order.

There is a canonical morphism (πG)∗ : D(X)G → D(X//G), where (πG)∗(P ) is the restriction
of P ∈ D(X)G to k[X]G = k[X//G]. We let Kn(X) denote the elements of Dn(X) which
annihilate k[X]G. Then, by definition, Kn(X)G is the kernel of (πG)∗ restricted to Dn(X)G, and
K(X)G := ∪nKn(X)G is the kernel of (πG)∗. We have

0 −→ K(X)G ↪→ D(X)G (πG)∗−→ D(X//G).

Note that Dn−1(X)τ(g) ⊂ Kn(X), where τ(C) denotes the action of C ∈ g on k[X] as a
derivation.

Define a positive integer n0 by

Kn0(X)G �= 0 and Km(X)G = 0 for any m < n0.

Lemma 1. The space Kn0(X)G is contained in Z(X)G.

Proof. For any a, b ∈ k[X]G and P ∈ Kn0(X)G one has [P, a](b) = P (ab) − bP (a) = 0. Hence
[P, a] ∈ Kn0−1(X)G. By definition, this implies [P, a] = 0. �

Now we are able to prove the main result of this note.

Theorem 3. Let G : X be an action with spherical orbits of a reductive group G on an affine
variety X. Suppose that generic G-orbits can be separated by invariants. Then the algebra
Z(X)G is commutative.

Proof. Elements of Z(X)G commute with the k[X]G-action on k[X] and can be considered
as differential operators on K ⊗k[X]G k[X] or on K ⊗k[X]G k[X]. Thus one has the embedding

Z(X)G ↪→ D(Xred)G(K). By Propositions 1 and 2, the last algebra is commutative. �

The algebra D(V )G is the centralizer of its scalar subalgebra k. This algebra is commutative
in spherical case. By Theorem 3, for representations of Table 1 (resp. Table 2) the commutativity
holds if one replaces scalars by k[q1] (resp. k[q1, q2]).
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Example 1. Let G = (k∗)s be an algebraic torus acting on V = kn, n ≥ s by

(t1, . . . , ts) ∗ (x1, . . . , xn) := (t1x1, . . . , tsxs, xs+1, . . . , xn).

It is clear that any torus action is an action with spherical orbits. For this particular action
generic orbits can be separated by invariants. One has k[V ]G = k[xs+1, . . . , xn] and Z(V )G =
k[x1∂1, . . . , xs∂s, xs+1, . . . , xn].

Example 2. Consider the action k∗ : k2, t ∗ (x1, x2) = (tx1, tx2). This is an action with
spherical orbits, but generic orbits can not be separated by invariants. Here k[V ]G = k and
Z(V )G = D(V )G = k〈x1∂1, x1∂2, x2∂1, x2∂2〉. The last algebra is not commutative.

Finishing this section, we would like to state the following

Conjecture. The following conditions are equivalent:
1) an action G : X is an action with spherical orbits and generic orbits can be separated by

invariants;
2) the algebra Z(X)G is commutative.
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