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Hopf bifurcations in problems with O(2) symmetry are considered. In these problems, the
Jacobian matrix is always singular at the circle of Z2 symmetric steady state solutions.
While a couple of imaginary eigenvalue cross the imaginary axis, the Hopf bifurcation is
not of standard type. The canonical coordinates transformation is used for removing the
zero eigenvalue and converting the problem into the standard form. The method is applied
to a system of ordinary differential equations on C

3 with many parameters and the stable
solutions are obtained using the centre manifold reduction. Further symmetry breaking
bifurcation is obtained on periodic solutions, leading to modulated travelling waves solutions.

1 Introduction

We consider bifurcations which occur in systems with O(2) symmetry. In particular we consider
the Hopf bifurcation from a non-trivial steady state solutions giving rise to a branch of direction
reversing wave (RW) solutions. Further bifurcation from these time periodic solutions lead to
a branch of modulated travelling (MTW) solutions. The standard Hopf theorem [1] cannot be
applied in this situation since there is a zero eigenvalue of the Jacobian at every nontrivial steady
state solution, due to the group orbit of solutions.

Krupa [2] considers the related, but more general problem of bifurcation from group orbits for
problems which are equivariant with respect to subgroups of O(n). In this case, the degeneracy
is dealt with by splitting the vector field into two parts, one tangent to the group orbit and one
normal to it. A standard bifurcation analysis can then be performed on the normal vector field
and the results are then interpreted for the whole vector field.

Barkley [3] considers Hopf bifurcation on the branch of travelling wave solutions, in the study
of reaction diffusion system. He presented a low-dimensional ordinary differential equations
model which has travelling wave solutions which undergo a Hopf bifurcation giving rise to MTW
solutions. They decoupled some of the variables involved in the system by a simple change of
coordinates to facilitate the analysis.

Landsberg and Knobeloch [4] studied the problem and showed that in problems with O(2)
symmetry a codimension-one symmetry breaking Hopf bifurcation from a circle of non-trivial
steady states gives rise to periodic motions. These periodic solutions reverse their direction
of propagation in a periodic manner. In another paper [5], they also refer to the modulated
travelling waves which can bifurcate from the RW solutions. However, they did not perform
any analysis of the bifurcations involved. We address these problems and related issues in this
paper.

In this paper we first consider the method of canonical coordinates in more detail to give
a clearer understanding of the type of solution which occurs and we analyse a further possible
bifurcation from the branch of time periodic solutions, to modulated travelling wave solutions.
In Section 2 we obtain the reduced equations to analyse the bifurcations and establish the
relationship between different coordinate system employed. Section 3 is devoted to a numerical
example to illustrate the method and to clarify the issues involved.
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2 Setting the system

Consider the system of equations ż = g(z, λ), where z = (z1, z2, z3) ∈ C
3 =: X and λ ∈ R is

the bifurcation parameter. Let zj = xj + iyj , j = 1, 2, 3 and assume that g is equivariant with
respect to the diagonal action of O(2) defined by

rα(z1, z2, z3) =
(
eiαz1, e

iαz2, e
iαz3

)
,

s(z1, z2, z3) = (z̄1, z̄2, z̄3) . (1)

Due to the reflection s the space X can be decomposed as X = Xs ⊕ Xa, where Xs and Xa

are the symmetric and anti-symmetric spaces with respect to the reflection s, respectively. Let
us assume that non-trivial solutions zs = zs(λ) bifurcate from trivial solutions at λ = 0. For
these non-trivial steady states at least one of the variables, say z1, is non-zero. There is a
corresponding group orbit of solutions which are generated by the rotation. These solutions are
contained in Fix(Z2) × R, where Z2 = {I, s}. The reflection s implies that y1 = y2 = y3 = 0.
We now write the original equations in real form as

ẋ = f(x, λ), x = (x1, x2, x3, y1, y2, y3), (2)

where f = (f1(x, λ), f2(x, λ), f3(x, λ), g1(x, λ), g2(x, λ), g3(x, λ)). The reflection s implies that
gz(zs, λ) = diag (gs

z(zs, λ) : ga
z (zs, λ)), where gs

z and ga
z are associated with symmetric and anti

symmetric spaces, respectively (see [6]). Clearly in real form these blocks take the form gs
z = [fij ],

ga
z = [gij ], where fij = ∂fi

∂xj
and gij = ∂gi

∂yj
, i, j = 1, 2, 3. All of the derivatives are evaluated at

(zs, λ).
The rotation symmetry implies that gz(zs, λ)Azs = 0 for all λ, where the linear operator A

is defined by Az = d
dα(rαz)|α=0. In this case Az = (iz1, iz2, iz3) and so Azs ∈ Xa. Thus the

anti-symmetric block is singular. We now assume that gz(zs, λ) also has eigenvalues ±iω0 at
(z0, λ0), where z0 = zs(λ0). Since we are interested in symmetry breaking Hopf bifurcation then
we assume that these eigenvalues occur in an anti-symmetric block. A necessary condition for
this bifurcation is that the anti-symmetric block ga

z has a minimum dimension three. We then
show that a branch of periodic solutions bifurcates from the steady state branch at (z0, λ0)
with a spatio-temporal symmetry (s, π). Further bifurcation can be obtained by breaking this
symmetry. However, due to the zero eigenvalue the Hopf bifurcation is not of standard type.
We thus use canonical coordinates [4, 7] in order to decouple one of the variables and then use
the standard theory.

2.1 Reduced equations

We introduce the canonical coordinates transformation

w1 =
z2

z1
, w2 =

z3

z1
, r = |z1|, θ = arg(z1), (3)

where wj = uj + ivj ∈ C, j = 1, 2 and r ∈ R are all invariant under the rotation and θ → θ + α.
This enable us to decouple the θ variable from the others, when the system (2) is written in
terms of these new variables, with the result

U̇ = G(U, λ), (4)

θ̇ = Gθ(U, λ), (5)

where U = (u1, u2, r1, v1, v2) and is invariant under the rotation. The reflection s acts as
s(u1, u2, r, v1, v2, θ) = (u1, u2, r,−v1,−v2,−θ). Thus, (4) has only a reflection symmetry. We
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note that, for the steady state problem G(U, λ) = 0, the symmetric space is characterized by
v1 = v2 = 0 and the anti-symmetric space by u1 = u2 = r = 0. Thus for steady state solutions
one can restrict the problem to the symmetric space and seek the solutions there. Now, let
us Us = (us

1, u
s
2, r

s
1, v

s
1, v

s
2) be a steady solution of (4), then due to the reflection we can write

GU = diag (Gs
U (Us, λ) : Ga

U (Us, λ)), where Gs
U is 3 × 3 matrix and Ga

U is 2 × 2. Expanding
equation (4) explicitly, using the definition of canonical coordinates, system (2), all the steady
state assumptions, and the computing algebra package MATHEMATICA we can be shown
that Ga

U is given by

Ga
U =

[
g22 − us

1g12 g23 − us
1g13

g32 − us
2g12 g33 − us

2g13

]
.

We will show that if ga
z (zs, λ) has a pair of imaginary eigenvalues then Ga

U also does (see Theo-
rem 1). Since GU has eigenvalues ±iω0 and no zero eigenvalue therefore we can apply the
standard theory, which implies that there exists a bifurcating branch of periodic solutions with
(s, π) ∈ Z2 × S1 symmetry, since s and π both act as −I on the eigenspace. It is possible to re-
scale time in order to have 2π-periodic solutions. This symmetry then implies that −v1(t+π) =
v1(t), −v2(t + π) = v2(t), and u1(t + π) = u1(t), u2(t + π) = u2(t), r(t + π) = r(t). As sθ = −θ,
the equivariance condition related to equation (5) is

Gθ(u1, u2, r,−v1,−v2, λ) = −Gθ(u1, u2, r, v1, v2λ).

Thus, for the time periodic solutions, with τ = t + π, we have

Gθ(u1(τ), u2(τ), r(τ), v1(τ), v2(τ), λ) = Gθ(u1(t), u2(t), r(t),−v1(t),−v2(t), λ)
= −Gθ(u1(t), u2(t), r(t), v1(t), v2(t), λ).

Integrating the above equation over the interval [0, 2π], considering 2π-periodicity of the func-
tions u1, u2, r, v1 and v2, we obtain Gθ, hence θ̇ has zero mean, which implies that θ is periodic.
Therefore, w1 and w2 are periodic and then the original variables z1, z2 and z3 are also time
periodic. A further bifurcation could occur from these periodic solutions which breaks the (s, π)
symmetry. The theory related to this bifurcation is well developed [1] and this is a simple bi-
furcation on time periodic solutions which occurs in the reduced system (4). However, breaking
this symmetry implies that θ̇(t) has no longer zero mean and so we can write θ̇(t) = c + θ̇0(t)
where θ̇0(t) has zero mean and c is constant. Hence θ(t) = ct+θ0(t)+k, where k is the constant
of integration that we set to zero. Since θ̇0 has zero mean, hence θ0 is periodic. Clearly, on the
periodic solutions, due to (s, π) symmetry, c = 0 and therefore θ(t) = θ0(t) is periodic. However,
if this symmetry is broken, then c �= 0 and so θ is not periodic but is composed of a constant
drift with velocity c superimposed on a periodic motion. This bifurcation arises as a simple
symmetry breaking bifurcation in system (4). The solution in the original coordinates is then
given by z1(t) = r(t)eiθ(t) = r(t)ei(ct+θ0(t)) = ei(ct)z̃1(t), where z̃1(t) = r(t)eiθ0(t) is periodic. The
first equation of (3) implies that z2(t) = ei(ct)w1(t)z̃1(t) = ei(ct)z̃2(t), where z̃2(t) = w1(t)z̃1(t)
is periodic. Finally, the second equation of (3) implies that z3(t) = ei(ct)z̃3(t), where z̃3(t) is
periodic. Hence we have the solutions of the form

Z(t) = rctz(t), (6)

where z(t) is a periodic function of time. Thus c = 0 corresponds to a branch of periodic
solutions while c �= 0 corresponds to MTW solutions that consist of time periodic solutions
drifting with constant velocity c along the group orbits. Note that the constant k �= 0 simply
gives rise to a one-parameter family of conjugate solutions, obtained by a constant rotation.
Initially therefore, the solutions are oscillating with only a very small amount of drift and so
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the rotational motion, characterised by the variable θ, continues to oscillate. However, as the
branch is followed further from the bifurcation point, the drift increases which could result in θ
increasing (or decreasing) monotonically.

Now we show Ga
U also has a purely imaginary eigenvalues on the branch of non trivial steady

state solutions. To see this, we first establish the relationship between two different coordinate
systems.

2.2 Eigenvalues of the reduced system

We now consider the linearisation of equations (4) and (5) on the anti-symmetric space and
obtain a connection between the two sets of coordinates in order to discuss about the eigenvalues
of the reduced system. Since we have a standard Hopf bifurcation in (4) then the bifurcating
solution near to the bifurcation point is given by U(t) = Us + αΦ(t) + O

(
α2

)
, where Φ(t) is a

solution of the linearisation of (4) about the steady state, i.e. Φ(t) = [0, 0, 0, V1(t), V2(t)]T , since
it is the anti-symmetric component of GU which has the imaginary eigenvalues. Again, near to
the bifurcation point, we have θ = θs +αΘ+O

(
α2

)
, where Θ is the solution of the linearisation

of (5) given by Θ̇ = ∂Gθ
∂v1

V1+ ∂Gθ
∂v2

V2. It is easily shown that ∂Gθ
∂v1

= g12 and ∂Gθ
∂v2

= g13, evaluated at
a symmetric steady state solution. The solution of this equation is Θ(t) = Θ0(t)+k, where Θ0(t)
is periodic with zero mean and k is an arbitrary constant of integration. Thus, the linearisation
of (4) and (5) about the symmetric steady state on the anti-symmetric space is given by

V̇ (t) = BV (t), (7)

where B is a (3×3) matrix, constructed by the augmenting a third column and a third row to Ga
U .

This consists of augmenting a column vector [0, 0, 0]T and a row vector [g12, g13, 0]. Note that
eigenvalues of B are ±iω0 and zero, therefore the solution of (7) is Vk(t) = [V1(t), V2(t), Θ0(t)]T +
k[0, 0, 1]T = Ṽ (t) + ke3, where k ∈ R is arbitrary constant. Note that Ṽ (t) is constructed from
the complex eigenvectors of B corresponding to the eigenvalues ±iω0 and e3 is the eigenvector
corresponding to the zero eigenvalue. Converting back to the original coordinates, we have

z1(t) = r(t)eiθ(t) =
(
rs + O

(
α2

))
ei(θs+αΘ0(t)+αk+O(α2)).

Since sin θs = 0, this implies that

x1(t) = rs cos θs + O
(
α2

)
= xs

1 + O
(
α2

)
,

y1(t) = α (rs cos θs) (Θ0(t) + k) + O
(
α2

)
= αxs

1(Θ0(t) + k) + O
(
α2

)
.

Similarly, it can be shown, by using definition of canonical coordinates, that

x2(t) = xs
2 + O

(
α2

)
,

x3(t) = xs
3 + O

(
α2

)
,

y2(t) = α [xs
2(Θ0(t) + k) + xs

1V1(t)] + O
(
α2

)
,

y3(t) = α [xs
3(Θ0(t) + k) + xs

1V2(t)] + O
(
α2

)
.

Hence, on the anti-symmetric space, the linearisation of the original equations given by

Ẏ (t) = ga
z (z0, λ0)Y (t), (8)

has solutions of the form

Yk(t) =


 xs

1(Θ0(t) + k)
xs

2(Θ0(t) + k) + xs
1V1(t)

xs
3(Θ0(t) + k) + xs

1V2(t)


 = T (Ṽ (t) + ke3) = TVk(t),
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where T =


 0 0 xs

1

xs
1 0 xs

2

0 xs
1 xs

3


. Note that Te3 = [xs

1, x
s
2, x

s
3]

T = Aza
0 , where Aza

0 is the anti-

symmetric part of Az0, which is a solution of (8) since it is independent of time and ga
z (z0, λ0)Aza

0

= 0. A more precise result is the following.

Theorem 1. If ga
z is the anti-symmetric block with the eigenvalues ±iω0 and 0 then

(i) ga
z (z0, λ0) = TBT−1,

(ii) Vk(t) is a solution of (7) if and only if Yk(t) = TVk(t) is a solution of (8).

Proof. (i) Note that the last column of T is [xs
1, x

s
2, x

s
3]

T = Aza
0 . Thus

ga
z (z0, λ0)T = xs

1


 g12 g13 0

g22 g23 0
g32 g33 0


 ,

and then it is easily verified that T−1ga
z (z0, λ0)T = B.

(ii) follows immediately from (i). �

The first of these results show more clearly that when ga
z has eigenvalues ±iω0, then so

does Ga
U . The second presents the relationship between the eigenvectors.

3 A numerical example

3.1 An equation on C
3

Consider the system [4],

ż1 = z2,

ż2 = z3,

ż3 = λz1 + νz2 + ηz3 + a|z1|2z1 + b|z2|2z1 + c|z1|2z2 + d|z1|2z3

+ ez2
1 z̄2 + fz2

1 z̄3 + gz2
2 z̄1 + h|z2|2z2 + jz1z̄2z3 + kz1z2z̄3 + l|z2|2z3 + mz2

2 z̄3. (9)

These equations are the normal form for a triple zero bifurcation with group O(2) symmetry and
such have a number of applications, particularly in fluid dynamics [9]. We write these equations
as ż = g(z, λ), where z = (z1, z2, z3) ∈ C

3 and λ is regarded as the bifurcation parameter. It is
easily verified that this system is equivariant with respect to the diagonal action of O(2) defined
by (1) (see [11]). System (9) has trivial solution z = 0 for ∀ λ; a bifurcating branch of solutions
occurs at λ = 0, and is given by x2

1 = −λ/a, y1 = y2 = y3 = 0. As these solutions are invariant
under the reflection symmetry s, conjugate solutions are obtained by applying the rotational
operator rα, giving rise to a circle of steady state solutions for each λ. The trivial solutions will
be stable for λ < 0 and unstable for λ > 0, if η, ν < 0. The bifurcating branch will then be stable
if it is supercritical. This occurs if a < 0. Therefore we choose a = −4.0, η = −2.5, µ = −10
so that a supercritical bifurcation occurs at λ = 0. In order to have a couple of imaginary
eignvalue in anti-symmetric block, evaluated at a non-trivial steady state, we choose d = 0,
f = −16, c = −1, e = 0. Therefore a symmetry breaking Hopf bifurcation occur at λ = 2.5,
giving rise to a branch of RW’s. We choose the rest of the parameters so that periodic orbits
are stable. This can be carried out using the canonical coordinates transformation followed by
the centre manifold reduction [10]. We omit the discussion and only introduce the rest of the
parameters as: b = −10, g = 30, h = 1, j = 10, k = −30, l = 20, m = −30. For these
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Figure 1. Bifurcation diagram of the equations
(9). With η = −2.5 a branch of RW solutions
appear at λ = 2.5, and the SW solutions occur at
λ = 2.7. A secondary bifurcation occurs on the
branch of SW solutions at λ = 2.577 giving rise
to a branch of MTW solutions which connects
to RW solutions at λ = 2.526.
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Figure 2. Enlarged bifurcation diagram around
the bifurcation points. All bifurcation points
stated in Fig. 1 can be seen clearly. A branch
of MTW solutions connects two branches of pe-
riodic orbits. A torus bifurcation obtained on
this branch at η = −2.5 and λ = 2.547.

values of the parameters we applied the numerical method described in the previous section and
the following bifurcations are obtained: on the branch of non-trivial steady states a symmetry
preserving Hopf bifurcation leading to a branch of periodic orbits occurs at λ = 2.70, these are
standing waves (SW) which lie in symmetric space. On the branch of RW solutions a secondary
bifurcation, giving rise to a branch of MTW solutions, occurs at λ = 2.526. This branch connects
with the branch of SW’s at λ = 2.577. On the branch of the MTW solutions a torus bifurcation
is also obtained at λ = 2.547. A bifurcation diagram of these solutions is shown in Fig. 1. This
diagram is enlarged in Fig. 2 to give a clear picture of the bifurcation points involved in the
problem. For λ = 2.595 and η = −2.50 a RW is given in Fig. 3, this is a time periodic solution
and reverses its direction of propagation in a periodic manner [4]. In Fig. 4 and Fig. 5, the MTW
solutions are represented for different values of λ and η. All of these solutions were obtained
using the package AUTO [8]. The MTW’s were reconstructed using equation (6).
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Figure 3. A RW solution at λ = 2.595 and η = −2.50. This is a time periodic solution with the
spatio-temporal symmetry.
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Figure 4. A MTW solution at λ = 2.531 and
η = −2.50. There is a 4-petal flower (2 small and
two large) repeating itself with time progression.
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Figure 5. A MTW solution at λ = 2.0886 and
η = −2.0800. There is a 4-petal flower (each
petal has same amplitude) repeating itself with
time progression.

4 Conclusions

The Hopf bifurcation in problems with O(2) symmetry is considered. The canonical coordinates
transformation were used in order to analyse the problem using standard theory, and also to
convert the solutions back into the original coordinates in order to obtain a correct interpretation
of the results.

We obtained time periodic solutions with spatio-temporal symmetry. Further bifurcation is
obtained by breaking this symmetry resulting in MTW solutions, which is due to the fact that one
of the variables in canonical coordinates drift with constant velocity. In addition an example
on C

3 with many parameters [4] was considered to clarify the analysis and centre manifold
reduction is used to obtain stable solutions. Two Hopf bifurcations leading to the SW’s and
the RW’s were obtained on steady state solutions. The occurrence of a second Hopf bifurcation
indicates that if a second parameter was varied there may be a Hopf/Hopf mode interaction.
This is the case that considered by Amdjadi [11] who introduced a numerical method for such
mode interactions.
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