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INVESTIGATION OF FORCED OSCILLATIONS IN CIRCULAR
CYLINDRICAL VESSELS SEPARATED BY DIAMETRICAL BARRIERS

O. V. Solodun UDC 534.1:629.764.7

We consider nonlinear oscillations of an ideal incompressible liquid in a partially filled vertical semicir-
cular cylindrical tank. We construct approximate periodic solutions for a four-mode system that describes
nonlinear oscillations in a semicircular cylindrical tank under the action of a perturbation force in the
plane of the barrier. We construct and investigate the domains of stability and instability for the physical
processes considered. We perform a numerical realization of the method and analyze the hydrodynamic
interaction of the liquid with the tank. The problem considered is of interest for the investigation of
nonlinear processes in a liquid in the case of tanks with diametrical barriers.

Introduction

To decrease the negative influence of oscillations of the free surface of a liquid on the stability of motion of
a “body–liquid” system, various structural devices are used in practice. In particular, devices in the form of rigid
or elastic barriers are widely used for this purpose. Barriers in vessels considerably affect the interaction between
the body and the liquid. This problem is well studied in the case of linear statements of the problem of dynamics
of solid bodies with liquid [1, 5, 8, 9, 20, 21]. However, this leads to a series of paradoxes, which can only be
eliminated by considering the corresponding problems in a nonlinear statement. This is confirmed by numerous
experimental [1, 8, 9, 19] and theoretical [10, 11, 15, 16, 17, 18] results.

Problems of nonlinear oscillations of a liquid are mainly based on the potential theory of an ideal incompres-
sible liquid. At present, analytic and numerical–analytic methods based mainly on asymptotic and modal tech-
niques are developed. In recent years, a modal approach based on the variational principles of mechanics [2, 14,
22] has been widely used. According to this approach, an original problem for partial differential equations is
reduced to systems of nonlinear ordinary differential equations containing time-dependent parameters that char-
acterize the evolution of the free surface of the liquid. This approach has numerous significant advantages over
analytic methods based on the principles of the theory of perturbations [3, 5, 12, 23]. The contemporary state of
mathematical problems of the nonlinear theory of oscillations of a liquid in moving vessels is discussed in [24].

In the present paper, we present the results of theoretical investigations of the behavior of a liquid in a moving
vessel in the form of a circular cylindrical tank separated by a diametrical barrier into two parts. These inves-
tigations are based on the nonlinear mathematical model of motion of a liquid constructed in [4] by using the
Miles–Lukovs’kyi method.

1. Mathematical Statement of the Problem

We consider the translational motion of a solid body that has the form of a vertical semicircular cylinder
containing a bounded amount of an ideal incompressible liquid with density ρ. In what follows, we assume that
the walls of the cylinder are absolutely rigid. We describe this motion in the cylindrical coordinate system x, ξ, η

associated with the cylinder and choose its origin to lie on the unperturbed free surface Σ0. The Ox -axis is
directed along the axis of the cylinder in the direction opposite to the vector of acceleration of the Earth’s gravity �g.
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We restrict ourselves to the consideration of irrotational motions of the liquid. Assume that the distribution of
the velocities of the liquid can be represented as the gradient of a potential function Φ(x, ξ, η, t) , namely,

�v = ∇Φ(x, ξ, η, t). (1)

Furthermore, the velocity potential must be a solution of the following nonlinear boundary-value problem with free
boundary, which (according to [3]) associates Φ(x, ξ, η, t) with the instantaneous location of the free surface, the
form of which is given by the equation ζ(x, ξ, η, t) = 0 :

�Φ = 0, �r ∈ Q, (2)

∂Φ
∂ν

= �v0 · �ν, �r ∈ S, (3)

∂Φ
∂ν

= �v0 · �ν −
ζt

|∇ζ|2
, �r ∈ Σ, (4)

∂Φ
∂t

+
1
2
(∇Φ,∇Φ) −∇Φ · �v0 + U = 0, �r ∈ Σ, (5)

where �ν is the unit vector of the outer normal to the surface of the domain Q occupied by the liquid, S is the solid
wall (including the surface of the barrier), Σ is the perturbed free surface of the liquid, �r is the radius vector of a
point of the volume of the liquid Q in the associated coordinate system, �v0 is the vector of translational motion
of the volume of the liquid Q, and U is the potential of the gravity forces.

The distribution of pressure in the volume of the liquid is determined by the Lagrange–Cauchy integral in the
cylindrical coordinate system Oxξη :

∂Φ
∂t

+
1
2
(∇Φ,∇Φ) −∇Φ · �v0 + gx+

p− p0

ρ
= 0, (6)

where p0 is the pressure of gas above the free surface of the liquid under the condition of conservation of the
volume of the liquid

∫
Q(t)

dQ = 0. (7)

Assume that pressure p on Σ is constant, i.e., p0 = const. The condition of conservation of volume (7)
is the condition of solvability of the Neumann boundary-value problem (2)–(4). The evolution problem with free
boundary (2)–(5) should be complemented with Cauchy initial conditions related to the initial profile of the free
surface Σ(t0) and the distribution of velocities at the initial moment of time t = t0 on it, namely,

ζ(x, ξ, η, t0) = ζ0(x, ξ, η),
∂Φ
∂ν

∣∣∣∣
Σ(t0)

= Φ0(x, ξ, η), (8)

where ζ0(x, ξ, η) and Φ0(x, ξ, η) are known functions.
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2. Modal System

For the generalized solutions of the boundary-value problem (2)–(5), the functional

W =

t2∫
t1

Ldt (9)

is stationary [3, 13, 14], i.e.,

δW = δ

t2∫
t1

Ldt = 0, (10)

where

L =
∫

Q(t)

pdQ = −ρ
t2∫

t1

∫
Q(t)

[
∂Φ
∂t

+
1
2
(∇Φ,∇Φ) −∇Φ · �v0 + gx

]
dQ. (11)

To determine the free surface and the velocity potential in the given volume, we solve the variational problem
(10) by the Miles–Lukovs’kyi method [2, 14]. According to this method, the form of the free surface (under the
assumption of solvability with respect to one variable) x = f(ξ, η, t) and the velocity potential Φ(x, ξ, η, t) are
represented in the form of a Fourier series in a certain complete system of orthogonal functions:

f(ξ, η, t) =
∞∑
i=1

βi(t)fi(ξ, η), (12)

Φ(x, ξ, η, t) = �v0 · �r +
∞∑

j=1

Rj(t)ϕj(x, ξ, η), (13)

where fi(ξ, η) is a complete system of functions in the Hilbert space L2(Σ0) orthogonal to a constant and given
on the unperturbed free surface Σ0, βi(t) are generalized Fourier coefficients that depend on time (as a parameter)
and are generalized coordinates that characterize the deviation of the free surface of the liquid from the unperturbed
location, Rj(t) are parameters that characterize the variation in the velocity potential with time, and ϕj(x, ξ, η)
is the system of harmonic functions in the domain Q(t) that satisfy the boundary nonflow condition on the wetted
surface S(t).

We substitute expansion (13) for the velocity potential in relation (11), taking expansion (12) into account.
Integrating the “Lagrange function” L in the above-mentioned variational principle with respect to the space
variables, we represent it as a function of the variables βi(t), Rj(t), and Ṙj(t).

For the determination of the parameters βi(t) and Rj(t) , we deduce from (10) the following general system
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of nonlinear ordinary differential equations:

∂L

∂βi
= 0, i = 1, 2, . . . ,

(14)

d

dt

∂L

∂Ṙn

− ∂L

∂Rn
= 0, n = 1, 2, . . . .

Results convenient for practical application can be obtained by taking into account finitely many parameters
βi(t) and Rj(t) and selecting among them the parameters that play the leading role. For the analytic realization
of the method presented, one should also impose certain restrictions on the order of smallness of these parameters.
In what follows, among the entire set of βi(t), we take into account only four coefficients in (12), namely, β0(t),
β1(t), β2(t), and β3(t) , which make a substantial contribution to the associated masses and moments of inertia of
the “body–liquid” system within the framework of the linear theory. For convenience, we redenote them as follows:

β0 = p0, β1 = r1, β2 = p2, β0 = r3.

In the present paper, assuming that r1 ≈ ε, p0 ≈ p2 ≈ ε2, and r3 ≈ ε3, we consider a mathematical model
with parameters of order up to ε3 inclusive.

3. Forced Oscillations in a Compartment under the Action of a Harmonic Perturbation Force

In the present paper, we consider only oscillations of a compartment under the action of a perturbation force
in the plane of the diametrical barrier. In [4], the method presented in [3] was applied to a circular cylinder, and the
following system of nonlinear ordinary differential equations describing oscillations of a liquid in the given volume
was deduced from (14):

L0(r1, p0) = p̈0 + σ2
0p0 + d∗14r1r̈1 + d∗8ṙ

2
1 = 0,

L1(r1, p0, p2) = r̈1 + σ2
1r1 + d∗1(r1ṙ

2
1 + r21 r̈1) + d∗3(p2r̈1 + ṗ2ṙ1) + d∗4r1p̈2

+ d∗5(ṗ0ṙ1 + p0r̈1) + d∗6r1p̈0 + P1ω
2 cos(ωt) = 0,

L2(r1, p2) = p̈2 + σ2
2p2 + d∗15r1r̈1 + d∗7ṙ

2
1 = 0,

L3(r1, p2, r3) = r̈3 + σ2
3r3 + d∗9r1ṙ

2
1 + d∗10r

2
1 r̈1 + d∗11ṙ1ṗ2 + d∗12p2r̈1 + d∗13r1p̈2 = 0, (15)
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where

d∗1 =
d1

µ1
, d∗3 =

d3

µ1
, d∗4 =

d4

µ1
, d∗5 =

d5

µ1
, d∗6 =

d6

µ1
,

d∗7 =
d7

µ2
, d∗8 =

d8

µ0
, d∗9 =

d9

µ3
, d∗10 =

d10

µ3
, d∗11 =

d11

µ3
, (16)

d∗12 =
d12

µ3
, d∗13 =

d13

µ3
, d∗14 =

d6

µ0
, d∗15 =

d4

µ2
, P1 =

Hλ23

µ1
.

In what follows, we omit the asterisk ∗ in the coefficients di .
It is necessary to find periodic solutions of system (15). To determine periodic solutions of this system, we

represent the generalized coordinate r1(t) in the form of a finite Fourier series with unknown coefficients [6]:

r1(t) = α0 +
n∑

k=1

(αk cos kωt+ βk sin kωt). (17)

In what follows, we preserve only the first harmonics in this approximation:

r1(t) = A cosωt+B sinωt. (18)

Using the first equation and the last two equations of system (15), which are linear with respect to p0(t) , p2(t) ,
and r3(t), we obtain explicit relations for the generalized coordinates p0(t) , p2(t) , and r3(t) :

p0(t) = (A2 +B2)f0 + (A2 −B2)f2 cos 2ωt+ 2ABf2 sin 2ωt,

p2(t) = (A2 +B2)g0 + (A2 −B2)g2 cos 2ωt+ 2ABg2 sin 2ωt, (19)

r3(t) = (A3 +AB2)h1 cosωt+ (B3 +A2B)h1 sinωt

+ (A3 − 3AB2)h3 cos 3ωt+ (3A2B −B3)h3 sin 3ωt,

where

f0 =
d14 − d8

2σ̄2
0

, f2 =
d14 + d8

2(σ̄2
0 − 4)

, g0 =
d15 − d7

2σ̄2
2

, g2 =
d15 + d7

2(σ̄2
2 − 4)

,

h1 =
1

4(σ̄2
3 − 1)

(−d9 + 3d10 + 4d12g0 + 2(−2d11 + d12 + 4d13)g2),

(20)

h3 =
1

4(σ̄2
3 − 9)

(d9 + d10 + 2(2d11 + d12 + 4d13)g2),

σ̄2
0 =

σ2
0

ω2
, σ̄2

1 =
σ2

1

ω2
, σ̄2

2 =
σ2

2

ω2
, σ̄2

3 =
σ2

3

ω2
.
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Substituting relations (18) and (19) in the Bubnov–Galerkin equations

2π
ω∫

0

L1(p0, r1, p2) cosωtdt = 0,

(21)
2π
ω∫

0

L1(p0, r1, p2) sinωtdt = 0,

we obtain a system of algebraic equations for the determination of the amplitudes A and B :

A(σ̄2
1 − 1) +A3m1 +AB2m1 + P1 = 0,

(22)

B(σ̄2
1 − 1) +B3m1 +A2Bm1 = 0,

where

m1 = −d1

2
− d5f0 − d3g0 +

(
2d6 −

d5

2

)
f2 +

(
2d4 −

d3

2

)
g2. (23)

If higher harmonics ( n > 1 ) are taken into account in series (17), then expressions (19) take a more complex
form. Correspondingly, the number of conditions (21) increases (to 2n+ 1 ) and the number of Eqs. (22) increases
as well. However, in the case of a circular cylindrical cavity without barriers, this improves the final result neither
qualitatively nor quantitatively [3].

Analyzing system (22) for P1 	= 0 , we get

A 	= 0, B = 0.

Taking relations (18), (19), and (22) into account, we conclude that the nonlinear system (15) may have only
the following approximate periodic solution:

r1(t) = A cosωt,

p0(t) = A2f0 +A2f2 cos 2ωt,

(24)

p2(t) = A2g0 +A2g2 cos 2ωt,

r3(t) = A3h1 cosωt+A3h3 cos 3ωt,

where the amplitude A is determined from the cubic equation

A3m1 +A(σ̄2
1 − 1) + P1 = 0. (25)
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Fig. 1. Amplitude–frequency characteristics of oscillations of the liquid in a semicircular cylindrical tank h/d = 1 in the neighborhood
of the principal resonance with the parameter χ11 = k11thk11h, ( k11 = 1.8412 ).

By using other methods of nonlinear mechanics, e.g., the Krylov–Bogolyubov–Mitropol’skii method or the
method of harmonic balance, one can obtain analogous equations for the amplitude-frequency characteristics of a
liquid.

The dependence of the modulus of amplitude of forced oscillations of a liquid (25) on the parameters P1

and ω is displayed in Fig. 1. Setting P1 = 0 in Eq. (25), we obtain an equation for the determination of the
dependence of the amplitudes of free oscillations of the liquid on the frequency (a so-called skeleton line). In
Fig. 1, it is depicted by a thin line.

The analysis of the amplitude–frequency characteristics for the free oscillations of a liquid in a semicylindrical
tank shows that, for the dynamical system considered, a nonlinearity of the “soft” or “rigid” type takes place,
depending on the depth of the liquid h . The critical value of dimensionless depth h∗/R for which the reverse
of frequencies occurs is equal to 0.597, whereas for a cylinder that is not partitioned into compartments we have
h∗/R = 0.52239.

4. Investigation of Stability of Periodic Solutions of the System of Equations (15)

Periodic oscillations described by relations (24) are not always realized in practice. Actually, only stable
motions take place.

To investigate the problem of dynamic stability of the free surface of a liquid, we analyze solutions of varia-
tional equations.

We deduce variational equations for oscillations in the case where Lyapunov-unperturbed motions of system
(15) are described by relations (24). Parallel with unperturbed motions (marked below by )̃, we consider motions
close to them of the form
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r1(t) = r̃1(t) + α(t), p0(t) = p̃0(t) + β(t),

(26)

p2(t) = p̃2(t) + γ(t), r3(t) = r̃3(t) + δ(t).

To obtain variational equations for the perturbations α, β, γ, and δ, we substitute the perturbed solutions
(26) in system (15) and take into account that the unperturbed solution (24) satisfies this system. Linearizing the
obtained system with respect to perturbations, we obtain the following system of variational equations:

L0 = β̈(t) + σ2
0β(t) + 2d8α̇(t)ṙ1(t) + d14(r1(t)α̈(t) + α(t)r̈1(t)),

L1 = (1 + d5p0(t) + d3p2(t) + d1r
2
1(t))α̈(t) + α̇(t)(d5ṗ0(t) + d3ṗ2(t) + 2d1r1(t)ṙ1(t))

+ α(t)(σ2
1 + d1ṙ1(t)2 + d6p̈0(t) + d4p̈2(t) + 2d1r1(t)r̈1) + d6r1(t)β̈(t) + d4r1(t)γ̈(t)

+ d5β̇(t)ṙ1(t) + d3γ̇(t)ṙ1(t) + d5β(t)r̈1(t) + d3γ(t)r̈1(t), (27)

L2 = γ̈(t) + σ2
2γ(t) + 2d7α̇(t)ṙ1(t) + d15(r1(t)α̈(t) + α(t)r̈1(t)),

L3 = δ̈(t) + σ2
3δ(t) + (d12p2(t) + d10r

2
1(t))α̈(t) + α̇(t)(d11ṗ2(t) + 2d9r1(t)ṙ1(t))

+ α(t)(d9ṙ1(t)2 + d13p̈2(t) + 2d10r1(t)r̈1) + d11γ̇(t)ṙ1(t) + d12γ(t)r̈1(t) + d13γ̈(t)r1(t).

The variational equations (27) are linear equations with periodic coefficients. The Floquet theory describes the
main properties of solutions of these equations. In the literature, these equations are called equations of the Hill
type. Solutions of these equations are classified into three groups, namely, (i) “unstable” solutions, which infinitely
increase as t → ∞, (ii) “stable” solutions, which remain bounded as t → ∞, and (iii) solutions with period T

or 2T, which are called neutral (they are considered as a special case of stable solutions).
Unstable solutions occupy certain domains on the plane of parameters of these equations. Furthermore, the

domains of instability are separated from the domains of stability by periodic solutions with periods T and 2T.
Two solutions of the same period bound a domain of instability, and two solutions of different periods bound a
domain of stability. Thus, the problem of determination of the boundaries of the domains of instability reduces to
the determination of conditions under which the differential equation has solutions with periods T and 2T.

Therefore, the problem of investigation of the stability of the periodic solutions (24) reduces to the investigation
of solutions of system (27). The equations obtained are a system of equations with periodic coefficients and, by
virtue of the Floquet–Lyapunov theorem, the fundamental system of their solutions contains solutions of the form

α(t) = eλtϕ1(t), β(t) = eλtϕ2(t),

(28)

γ(t) = eλtϕ3(t), δ(t) = eλtϕ4(t),

where λ is the characteristic exponent of the system and ϕi are 2π/ω -periodic functions.
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It follows from relations (28) that the stability of solutions (24) depends on the values of the characteristic
exponent λ. If all characteristic exponents have negative real parts, then the periodic solutions are stable. If,
among the characteristic exponents, there is at least one with positive real part, then the periodic solutions are
unstable. The case where the real part of the characteristic exponent is equal to zero is more complicated. If the
characteristic exponents are simple or multiple with simple elementary divisor, then the solutions of the system of
variational equations (27) are bounded in time.

To derive an equation for the determination of characteristic exponents, we represent the periodic function
ϕ1(t) in the form of a Fourier series and retain only the first harmonics in the expansion, i.e.,

ϕ1(t) = a1 cosωt+ b1 sinωt, (29)

where a1 and b1 are certain constant coefficients.
We substitute relations (29) and (28) into the system of variational equations (27). One can explicitly determine

the perturbations β(t), γ(t) , and δ(t) from the first equation and the last two equations of the system and express
them in terms of a1 and b1.

For the determination of the coefficients a1 and b1, we obtain the following homogeneous system of linear
algebraic equations:

C11a1 + C12b1 = 0,

(30)

C21a1 + C22b1 = 0.

Denote the ratio λ/ω by λ̄. The coefficients of the linear algebraic system (30) C11, C12, C21, and C22

are expressed in terms of the coefficients of the system of nonlinear differential equations (15), the quantity λ̄, and
the amplitude A of the generalized coordinate r1(t) as follows:

C11 = σ̄2
1 − 1 + λ̄2

(
1 +A2

(
3
4
d1 + d3

(
g0 +

1
2
g2

)
+ d4

(
y1 −

1
2
y3

)

+ d5

(
f0 +

1
2
f2

)
+ d6

(
x1 −

1
2
x3

)))
−A2λ̄

((
1
2
d3 − 2d4

)
y4 +

(
1
2
d5 − 2d6

)
x4

)

+A2

(
−3

2
d1 − d3(g0 + y1) − d5(f0 + x1) +

(
1
2
d3 − 2d4

)
(g2 − y3)

+
(

1
2
d5 − 2d6

)
(f2 − x3)

)
,

C12 = A2λ̄2

(
d4

(
y2 −

1
2
y4

)
+ d6

(
x2 −

1
2
x4

))

+ λ̄

(
2 +A2

(
d1 + 2d3g0 + 2d5f0 +

(
1
2
d3 − 2d4

)
y3 +

(
d5

2
− 2d6

)
x3

))

+A2

(
− d3y2 − d5x2 −

(
1
2
d3 − 2d4

)
y4 −

(
1
2
d5 − 2d6

)
x4

)
,
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C21 = A2λ̄2 1
2

(d4y4 + d6x4) − λ̄

(
2 +A2

(
d1 + d3 (2g0 + y1) + d5(2f0 + x1)

+
(

1
2
d3 − 2d4

)
y3 +

(
1
2
d5 − 2d6

)
x3

))
+A2

((
1
2
d3 − 2d4

)
y4 +

(
1
2
d5 − 2d6

)
x4

)
,

C22 = σ̄2
1 − 1 + λ̄2

(
1 +A2

(
1
4
d1 + d3

(
g0 −

1
2
g2

)
− 1

2
d4y3 + d5

(
f0 −

1
2
f2

)
− 1

2
d6x3

))

+A2λ̄

(
− d3y2 − d5x2 −

(
1
2
d3 − 2d4

)
y4 −

(
1
2
d5 − 2d6

)
x4

)

+A2

(
− 1

2
d1 − d3g0 − d5f0 −

(
1
2
d3 − 2d4

)(
g2 + y3

)
−

(
1
2
d5 − 2d6

)
(f2 + x3)

)
, (31)

x1 =
−λ̄2d14 + 2d14 − 2d8

2(λ̄2 + σ̄2
0)

, x2 =
λ̄(d8 − d14)
λ̄2 + σ̄2

0

,

x3 =
2d8(4 + 3λ̄3 − σ̄2

0) + d14(λ̄4 + (λ̄2 − 2)(σ̄2
0 + 2) + 12)

2(λ̄4 + 2λ̄2(σ̄2
0 + 4) + (σ̄2

0 − 4)2)
, (32)

x4 =
λ̄(λ̄2(d8 − d14) + (d8 + d14)σ̄2

0)
λ̄4 + 2λ̄2(σ̄2

0 + 4) + (σ̄2
0 − 4)2

,

y1 =
−λ̄2d15 + 2d15 − 2d7

2(λ̄2 + σ̄2
2)

, y2 =
λ̄(d7 − d15)
λ̄2 + σ̄2

2

,

y3 =
2d7(4 + 3λ̄3 − σ̄2

2) + d15(λ̄4 + (λ̄2 − 2)(σ̄2
2 + 2) + 12))

2(λ̄4 + 2λ̄2(σ̄2
2 + 4) + (σ̄2

2 − 4)2)
, (33)

y4 =
λ̄(λ̄2(d7 − d15) + (d7 + d15)σ̄2

2)
λ̄4 + 2λ̄2(σ̄2

2 + 4) + (σ̄2
2 − 4)2

.

Since the system of linear algebraic equations (30) with respect to the constants a1 and b1 must have a
nonzero solution (otherwise, a1 = b1 = 0 ), the determinant of this system must be equal to zero, i.e.,

D(λ) =
∣∣∣∣ C11 C12

C21 C22

∣∣∣∣ = 0. (34)

Expanding determinant (34), we obtain a characteristic equation, which, in the general case, is a polynomial of
degree 24 in λ̄. The derivation of this equation in explicit form with regard for relations (31)–(33) is a rather com-
plicated procedure. Therefore, for the investigation of the values of the characteristic exponents λ, it is necessary
to find all roots of the characteristic determinant (34) by numerical methods. Thus, unstable motions correspond
to the case where there exist characteristic exponents with nonzero real part (Reλ 	= 0). Stable oscillations are
associated with imaginary roots (Reλ = 0) of the characteristic determinant (34), which, according to the Hill
classification, belong to solutions of the neutral type of the corresponding variational equations.
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Fig. 2. Stable branches of the amplitude–frequency characteristics of oscillations of a liquid.

In Fig. 2, we present the amplitude–frequency characteristic of oscillations of a liquid with parameters (36)
computed by using relations (24). The amplitudes of stable and unstable oscillations are depicted by heavy and
less heavy lines, respectively. It follows from the form of the curves that the frequency depends nonlinearly on
the amplitude of oscillations. The thin line represents the dependence of the frequency on the amplitude for free
oscillations of the liquid.

Thus, we have reduced the problem of investigation of the stability of periodic solutions (24) of system (15),
which describe the motion of the liquid in a given cavity, to the problem of determination of the roots of the
characteristic determinant (34).

It should also be noted that we can apply the method of slowly varying amplitudes [6] to the problem of finding
approximate expressions for the generalized coordinates p0(t), r1(t), p2(t), and r3(t). This enables us to trace
transient modes, if they exist.

5. Analysis of Amplitude–Frequency Characteristics of Nonlinear Oscillations of the Free Surface of a Liquid

The amplitude–frequency characteristics of nonlinear oscillations of the free surface of a liquid are determined
by Eq. (25). For the stationary modes of motion, we can describe the evolution of the free surface of the liquid in
each particular case by using the following representation for the free surface:

x = p0(t)Y0(k0ξ) − r1(t)Y1(k1ξ) sin η − p2(t)Y2(k2ξ) cos 2η + r3Y3(k3ξ) cos 3η. (35)

In Fig. 3, we display the amplitude–frequency characteristics of oscillations of the liquid calculated according

to relations (24) for the cylindrical sector with half-angle α =
π

2
with the parameters

R0 = 0, R = 1, d = 2R, h = 2, H = 0.01094; (36)

we also present there the experimental data obtained in [7]. We denote the mean amplitude (which is equal to the
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half sum of the amplitudes of two peaks measured near the wall in the plane of action of the perturbation force) by
a and the acceleration of gravity by g. In the case considered, the mean amplitude is determined by the relation

a =
d

2
(|p0(t) + r1(t) − p2(t)| + |p0(t) − r1(t) − p2(t)|). (37)

One can see that there the theoretical results agree well with the experimental data marked by the symbol ×
in Fig. 3.

The analysis of the evolution of the free surface of the liquid performed for the cylindrical vertical sector with
parameters (36) for the profile of wave (35) [constructed by using relations (24) and (25)] and different moments
of time t shows that the height of the “hump” is greater than the depth of the “valley.” Therefore, the perturbed
free surface of the liquid is nonsymmetric. The location of the nodal line varies with time, whereas, according to
the linear theory, the nodal line is fixed.

This is especially apparent for the maximum values of amplitudes, which are equal to 0.60476 and 0.29458 in
the case considered, i.e., the ratio of the height of the “hump” and the depth of the “valley” is equal to 2.05291 (for
t = 0.78 ).

The difference between the height of the “hump” H and the depth of the “valley” increases with the amplitude
of perturbations. Note that, in this case, the period of oscillations is equal to T = 2π/ω = 1.08008.

Thus, it follows from the examples presented above that, by using the method proposed, one can qualitatively
and quantitatively investigate the kinematics of nonlinear oscillations of a liquid near the principal resonance in
the tank with barrier. The results obtained are in good agreement with the experimental data presented in [7].
Therefore, taking into account four generalized coordinates, which corresponds to retaining the first four natural
forms of oscillations of the free surface of the liquid (two symmetric and two asymmetric) in the expansion of the
free surface, one can fairly completely (both qualitatively and quantitatively) describe nonlinear effects caused by
the evolution of the free surface.
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6. Force Interaction of the Liquid and the Vessel

Consider the problem of force interaction of a liquid with a partially filled tank, which is important in practice.
As is known, the principal vector of forces exerted by the liquid on the tank is determined as follows:

�P =
∫
S

∫
p�ndS, (38)

where �n is the unit vector of the outward normal to the wetted surface S and p is the pressure of the liquid
determined from the Lagrange–Cauchy integral

∂Φ
∂t

+
1
2
(∇Φ)2 −∇Φ · �̇u− �g · �r +

p

ρ
= 0. (39)

Here, g = (−g, 0, 0) , and �u = (0, 0, H cosωt) gives the law of motion of the tank.
The direct application of relation (38) is extremely difficult in practice. To find an expression for the hydrody-

namic force, we use the results presented in Sec. 13 of [3]. As a result, we get

�P = −m(�̈u− �g) − d �K

dt
, (40)

where m is the mass of the liquid and �K is the momentum of the liquid defined by the formula

�K = ρ

∫∫
Q

∫
(∇Φ)dQ. (41)

In the general case where the equation of the perturbed free surface Σ has the form

x =
∑

i

βi(t)fi(y, z), (42)

we obtain the following relations for the projections of the momentum �K to the axes of the Cartesian coordinate
system:

Kx =
1
2

∑
i

λi1βi(t)β̇i(t),

(43)

Ky =
∑

i

λi2β̇i(t), Kz =
∑

i

λi3β̇i(t),

where

λi1 = ρ

∫
Σ0

f2
i (y, z)dS, λi2 = ρ

∫
Σ0

yfi(y, z)dS, λi3 = ρ

∫
Σ0

zfi(y, z)dS. (44)
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In the case considered, the quantities p0(t), r1(t), p2(t), and r3(t) play the role of the generalized coor-
dinates βi(t). The projections of the hydrodynamic force to the axes of the coordinate system have the following
form up to terms of the third order of smallness:

Px = −mg − λ21(r1r̈1 + ṙ21),

Py = −λ12p̈0 − λ32p̈2, (45)

Pz = −mü− λ23r̈1,

where

λ21 =
π

2
ρ

R∫
R0

ξY 2
1 (k11ξ)dξ, λ12 = 2ρ

R∫
R0

ξ2Y0(k01ξ)dξ,

(46)

λ32 =
2
3
ρ

R∫
R0

ξ2Y2(k21ξ)dξ, λ23 =
π

2
ρ

R∫
R0

ξ2Y1(k11ξ)dξ.

For practical purposes, the most important in the case under consideration is the component of the total hydro-
dynamic force Pz along the Oz -axis (along which the forced oscillations of the sector take place). Substituting
the expressions for u(t) and r1(t) in the last relation of system (45), we obtain the following relation for the
determination of the amplitude of the force:

|Pz| =
π

2
ρω2[R2hH +Aj], (47)

where

j =

R∫
R0

Y1(k1ξ)ξ2dξ. (48)

Using relation (47), we can estimate the contribution to the projection of the total hydrodynamic force Pz

made by the inertial forces

|P if
z | =

π

2
ρω2R2hH (49)

and by the wave motion of the free surface of the liquid

|P vm
z | =

π

2
ρω2Aj. (50)

For a cylindrical sector with R = 1 and h = 2 that harmonically oscillates along the Oz -axis with the
arm H = 0.01094, relative frequency ω/σ1 = 0.949, and the amplitude of the principal generalized coordinate
A = 0.22336, the contribution of the amplitude P vm

z to the value of Pz is about 84%. This means that, in finding
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Fig. 4. The amplitude of the force ( H = 0.01094, × denotes an increase in frequency, and ◦ denotes a decrease in frequency).

the projection of the amplitude of the total hydrodynamic force to the Oz -axis, it is important to determine the
amplitude–frequency characteristic A(ω/σ1) of the generalized coordinate r1(t) more precisely.

Within the framework of the theory presented, we consider the problem of influence of the vertical diametrical
barrier on the character of the force action of the liquid on the tank. It is known [7] that, in the tank halved by a
diametrical barrier, the spatial motion in the form of a circular wave is eliminated.

In Fig. 4, we present the amplitude–frequency characteristics of the dimensionless force Pz for a cylinder
halved by a vertical barrier with parameters (36); the symbols × and ◦ depict some experimental data from [7]. As
in the case of a cylindrical tank without barrier [3], the theoretical and experimental results agree with an accuracy
up to 1.5 − 2%. Furthermore, in the case where the cylindrical tank is divided into two parts, the maximum value
of the projection of the amplitude of the hydrodynamic force to the Oz -axis decreases approximately by 23%.

It should also be noted that the results obtained on the basis of mathematical model (15) agree with experimen-
tal data better than the results calculated according to the Hatton model [7, 12] based on the theory of perturbations.

Comparing Figs. 3 and 4, we conclude that, for the projection of the total hydrodynamic force (Fig. 4), the
theoretical results agree with experimental data better than for the mean amplitude (Fig. 3).

CONCLUSIONS

In the present paper, we have considered nonlinear oscillations of an ideal incompressible liquid. Using the
Bubnov–Galerkin method, we have constructed periodic solutions for the considered four-mode system describing
nonlinear forced oscillations of the liquid in a semicircular cylindrical tank in the case of a perturbation force acting
along a barrier. We have constructed and investigated the domains of stability and instability of forced oscillations.
It has been confirmed that, in the neighborhood of the principal resonance of the system, the amplitudes of forced
oscillations of the liquid and the amplitudes of the force are bounded, the location of the nodal line of the free
surface of the liquid varies with time, the height of the “hump” of the deformed surface is greater than the depth
of the “valley,” and some other nonlinear effects take place. We have established that the presence of a barrier
improves the stability of this system (in addition, a partition of this type eliminates spatial motions in the form
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of a circular wave). We have analyzed the hydrodynamic interaction of the liquid with the tank. The results of
computation are in good agreement with experimental data. The results obtained can be used for the design of
means of transport containing a large amount of a liquid.

This work was partially supported by the State Foundation for Fundamental Research (grant No. 01.07/096).
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