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We report on the possibility of unidirectional motion of a topological soliton in a dissipa-
tive AC-driven sine-Gordon equation. This motion is due to breaking of certain space-time
symmetries. It can be achieved by the proper choice of the potential or the AC force. We for-
mulate the necessary symmetry conditions for the AC force and confirm them with the first
order perturbation theory and numerical simulations. The same symmetry considerations
are applied to the discrete sine-Gordon equation.

1 Introduction

Transport phenomena based on nonlinear effects are at the heart of many problems in physics. In
this context the problem of creation of a net DC current from signals of zero mean is of particular
interest [1]. Historically this problem has been posed by Smolouchowski and Feynmann (see [2])
under the name of the ratchet effect. It can be described as a Brownian particle in an asymmetric
periodic potential, moving in a specific direction in presence of damping under the action of AC
forces of zero average. The origin of a net motion is associated with the breaking of space-
temporal symmetries of the system [3, 4]. The effect, originally studied for Brownian particles,
was generalized to soliton systems with asymmetric potentials [5]. On the other hand, it is known
that for a particle an unidirectional transport is possible also in symmetric periodic potentials,
provided the driving force breaks certain temporal symmetries which relate orbits of opposite
velocities in phase space [3]. Since in applications it is easier to act on the temporal part (by
using external forces) than on the spatial part (by inducing distortion of the potential) of the
system, we aim to explore the effect of the temporal symmetry breaking on soliton dynamics.

2 Sine-Gordon equation

Solitons are nonlinear waves that are spatially localized, move with constant velocity and collide
elastically. Among the equations that have soliton solutions, the sine-Gordon (SG) equation

utt − uxx = − sinu, (1)

takes a special place. This equation has a number of applications in condensed matter physics,
quantum field theory and other areas of modern science. It has soliton solutions in the form of
kinks and antikinks: u(x, t) = 4 tan−1

[
exp

(± (x − vt)/
√

1 − v2
)]

. The sign “+” stands for the
kink while “−” stands for the antikink. Kinks and antikinks come as a one-parametric family
of solutions with the velocity v as a parameter. The velocity spectrum for kinks and antikinks
is symmetric with respect to zero: −1 < v < 1. In the unperturbed version the solitons of the
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SG equation have well-defined particle properties with their mass, energy, momentum

P = −
∫ +∞

−∞
uxutdx, (2)

and topological charge

Q =
1
2π

∫ +∞

−∞
uxdx. (3)

For kinks Q = 1 while for antikinks Q = −1. For brevity, further on we will consider only kinks.
If a weak perturbation is added the particle properties of the topological soliton will survive.
The dynamics of the soliton can be approximately described by the dynamics of its center of
mass. Thus, one could define the soliton velocity as

v =
1
2π

∫ +∞

−∞
xuxtdx, (4)

bearing in mind that it works only if the soliton can be approximated as a particle, e.g. when
the perturbation is weak enough.

We are interested in the AC-driven and damped sine-Gordon (SG) equation

utt − uxx + sinu = −αut + E(t) ≡ εf(t), 〈E(t)〉t = 0, (5)

where E(t) = E(t+T ) is a periodic field with zero mean and α stands for the damping coefficient.
For our problem the boundary conditions can be either periodic: u(x + L, t) = u(x, t) + 2π,
ux(x + L, t) = ux(x, t), or free ends: ux(0, t) = ux(L, t) = 0. If the size of the system L is much
larger then the size of the soliton, for our purposes both cases should yield the same result. For
practical tasks, mostly connected with soliton dynamics in Josephson junctions, the choice of
boundary conditions means different physical situations, but this is out of scope of this paper.

Now our aim is to formulate general conditions on the driving field E(t) that will provide
directed motion of a soliton. All symmetry operations (see for details [6, 7]) that can relate
a soliton solution u(x, t; v) having velocity v with the identical solution but with velocity −v

Ŝu(x, t; v) = u(x, t;−v),

must be destroyed. These symmetries can be combinations of all possible shifts and reflections
in t, x and u. We also should keep in mind that these symmetries should not change the sign of
the topological charge (3) in order to avoid transformations from a kink to an antikink (or vice
versa). For the unperturbed SG equation (1) there are only two such operations:

ŜX : x → −x, t → t + T/2, u → −u + 2π, ŜT : t → −t + 2t0.

The parameter t0 is defined by the shape of the function E(t). If the perturbation is added as
written in equation (5), the time-reversal symmetry ŜT is destroyed due to damping. Thus, the
only symmetry left is the ŜX symmetry. The SG equation will be invariant under this symmetry
if the driving fields satisfy the following condition:

E(t + T/2) = −E(t). (6)

It is easy to see that if E(t) = E(t + T ) and 〈E(t)〉t = 0, the only way to change the sign of the
function E(t) is to shift it by T/2. In the underdamped limit α = 0 the equation of motion is
also invariant under the time reversal symmetry ŜT if

E(t + t0) = E(−t + t0). (7)
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Thus, in order to achieve directed soliton propagation, one must apply the driving field E(t)
that violates the condition of equation (6) in the general dissipative case (α �= 0) and in the
non-dissipative case (α = 0) both (6) and (7) should be violated.

It has been shown in [8] that equation (5) with the single harmonic drive [E(t) = E0 cos(ωt+
θ0)] does not yield propagating kinks if the the driving amplitude is small enough. Kinks can
propagate either if damping is very weak (see [8]) or when the driving amplitude exceeds certain
threshold and the driving frequency is close to the resonance with the phonons ω ∼ 1 (see [9]).
But in both cases this motion is not directed: kinks can move in either direction and proper
averaging with respect to the initial phase will yield zero average kink velocity. For our problem
we choose the driving field in the following form:

E(t) = E1 cos ωt + E2 cos (mωt + θ). (8)

For this choice condition (6) is violated for any θ if E1, E2 �= 0 and m is even, and is not violated
for any E1, E2 and θ if m is odd. Also, condition (7) is violated if θ �= 0,±π and E1, E2 �= 0.

2.1 Perturbation theory

In order to get an idea how the driving field (8) affects the soliton dynamics, we use the soliton
perturbation theory (see [10, 8] for details). The first order of the perturbation theory takes
an advantage of the particle properties of the SG kink. It is assumed that perturbation εf(t)
of equation (5) is weak, so that the kink shape is not changed under the perturbation and its
parameters change in time adiabatically. Therefore the initial problem can be mapped into the
dynamics of the kink mass center coordinates (X(t), v(t) ≡ Ẋ(t)), that can be introduced as
u(x, t) = 4 tan−1(exp{[x−X(t)]/[1− Ẋ2(t)]1/2}). An ordinary differential equation for X(t) can
be obtained by differentiating the momentum (2) with respect to time, and using equation (5):

Ṗ = −αP + 2πE(t). (9)

Assuming P (t) = 8v(t)/
√

1 − v(t)2, equation (9) can be solved for P (t), and eventually analyti-
cal expression of the average kink velocity 〈v〉, valid in the limit Ej/

√
α2 + (jω)2 � 1, j = 1, 2,

can be obtained (see [7] for details) for m = 2:

〈v〉 =
1
T

∫ T

0
v(τ)dτ 	 3π3E2

1E2 sin(θ − θ0)
512(α2 + ω2)

√
α2 + 4ω2

, tan θ0 =
α(α2 + 3ω2)

2ω3
. (10)

Similarly, for m = 3 we obtain that 〈v〉 = 0 independently on θ and for an arbitrary initial
phase. These results can be easily understood from the symmetry properties of E(t). In the
underdamped limit α → 0 we obtain θ0 → 0, and, consequently 〈v〉 ∼ sin θ. Thus, directed
soliton motion ceases to exist if θ = 0,±π. This is not surprising since for these values of θ the
driving field equals E(t) = E1 cos(ωt) ± E2 cos(2ωt) and the symmetry ŜT is restored because
E(t) = E(−t).

2.2 Numerical simulations

In order to check the above considerations we have performed numerical simulations of the
perturbed SG equation (5). In Fig. 1 the dynamics of a SG kink, initially at rest, driven by
a bi-harmonic driver with m = 2 and by a single harmonic driver (i.e. E2 = 0), are reported
in Figs. 1(a,b), respectively (note that we use contour plots to show the time evolution surface
generated by the kink profile). From these figures we see that, in the case m = 2 the soliton
center of mass moves with a constant velocity, while for the single harmonic driver, it oscillates
around the initial position. Numerical results of [7] show that an antikink with parameters as
in Fig. 1a will move in the opposite direction.



Symmetry Breaking and AC-Driven Dynamics of Solitons 519

50 100 150 200

1000

2000

3000

 x

(b)

50 100 150 200

1000

2000

3000

4000

 t

 x

(a)

Figure 1. Contour plots of the velocity field ux(x, t) for (a): E1 = 0.4, E2 = 0.26 and (b): E1 = 0.66,
E2 = 0 under periodic boundary conditions. Other parameters are α = 0.12, ω = 0.25, θ = 1.61.
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Figure 2. Contour plot for the displacement field u(x, t) in the presence of white noise for parameters
as in Fig. 1a.

Let us now briefly investigate the influence of a white noise on the kink dynamics. In order
to accomplish this, we have simulated equation (5) with an additional stochastic term ξ(x, t)
which satisfies 〈ξ(x, t)〉 = 0, 〈ξ(x, t)ξm(x′, t′)〉 = 2αDδ(x − x′)δ(t − t′). In Fig. 21 we report
the contour plot for the kink motion in the case of a bi-harmonic driver with m = 2. We see
that the noise introduces disturbances on the profile but does not destroy the directed motion
of the soliton. We checked that this property remains true also if we increase the amplitude of
the noise up to the value when kink-antikink pairs start to nucleate. Moreover, the existence
of the phenomena in presence of noise shows the validity of the above mechanism also for the
non-deterministic soliton ratchets. Since the simulations with white noise can also be considered
as “averaging” over the phase space, our simulations also have demonstrated that there is only
one attractor of the system and the computed soliton velocity indeed can be considered and an
average one. Similar simulations for m = 3 (see [7] for details) show that no directed motion of
a kink is possible. This is because for m = 3 the ŜX symmetry is not broken.

In Fig. 3 we show how the average kink velocity changes as a function of the phase difference
between the driving fields, θ. Numerical results clearly confirm analytical approximation of
the previous subsection (equation (10)). Another important observation is confirmation of the
symmetry argument. As long as the underdamped limit is approached, the curve 〈v〉(θ) crosses
the line 〈v〉 = 0 closer and closer to the points θ = 0,±π. This is in accordance with the fact
that the symmetry ŜT is restored in this limit and (7) is no longer violated.

3 Discrete sine-Gordon equation

Discrete sine-Gordon (DSG) equation is a modification of its continuous counterpart for the
media with spatial discreteness. It is used to model phenomena on lattices, for example fluxon

1Figures in colour will be available only in electronic version.
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Figure 3. Scaled average kink velocity as a function of the phase difference θ for E1 = 0.3, E2 = 0.195,
ω = 0.25; α = 0.08 (•), α = 0.15 (+) and α = 1 (∗). Solid lines are the best fit to the A sin(θ + θ0)
function.

dynamics in parallel Josephson junction arrays, dislocation motion in crystals, etc. The driven
and damped DSG has the following form:

ün + αu̇n − κ(un+1 − 2un + un−1) + sinun + E(t) = 0, n = 1, 2, . . . , N, (11)

Here all the terms and parameters have the same meaning as in the SG counterpart. The
parameter κ measures the discreteness of the system, in the limit κ → ∞ the above equation
reaches the continuum limit. One must mention that DSG is not integrable as compared to
the continuous one and there is certain principal difference in its dynamics: kinks in this model
cannot propagate with constant velocity (in the unperturbed limit, α = 0, E(t) = 0). Kinks
in DSG are pinned by the lattice (see [11] for details). Similarly to the case of the continuous
sine-Gordon, two cases of boundary conditions can be considered: periodic un+N = un + 2π,
n = 1, 2, . . . , N or free ends.

Discrete kink dynamics can be mapped (with a certain degree of approximation) into dynam-
ics of a single particle. As shown by Braun and Kivshar in [11] this dynamics is described by
the dynamics of the kink center X(t): un(t) = 4 arctan [exp[n − X(t)]]. Using this ansatz, the
effective equation of motion for the kink center can be obtained:

Ẍ + αẊ + V ′
PN(X) + Ẽ(t) = 0, Ẽ(t) ∼ E(t). (12)

Here the Peierls–Nabarro (PN) potential VPN(X) = VPN(X + 1), V ′
PN(X) ∼ sin 2πX, takes into

account the discreteness of the lattice. Progressive kink motion is analogous to rotations of
an AC-driven and damped pendulum. It will be locked to the frequency of the drive and will
correspond to limit cycles of equation (12). The average kink velocity thus can be expressed as:

〈v〉 = 〈Ẋ(t)〉 = (m/n)(ω/2π), m, n ∈ Z.

Here m corresponds to the number of sites which kink has traveled during the time nT = 2πn/ω.
Similarly to the previous case of the continuous SG, in order to achieve directed kink motion,

we should destroy all symmetries which relate solutions with opposite velocities. We can do this
analysis on the basis of equation (12) and this brings us to the problem, solved some time ago
(see papers [3,4]). Operations which change the sign of the velocity are either shift in space and
reflection in time or shift in time and reflection is space. In the underdamped case α = 0 there
are two such symmetries

D̂X : t → t + T/2, X → −X, D̂T : t → −t + 2t0.

Situation here is very similar to the continuous case. Equation (12) is invariant under the
operation D̂X always only if E(t) = −E(t + T/2) is satisfied (along with VPN(−X) = VPN(X)
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Figure 4. Numerical integration of equation (11) for (a) E1 = 0.3, E2 = 0.15 and (b) E1 = 0.45, E2 = 0.
Other parameters are κ = 1, α = 0.05, ω = 0.1, θ = 2. Periodic boundary conditions have been applied.
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Figure 5. Velocities of two kinks, running into the opposite directions at α = 0.05, ω = 0.1, E1 = 0.21,
θ = 0 as a function of E2/E1. Dashed line denotes that the given solution is no longer stable.

which is always satisfied because the sine-Gordon potential is symmetric). In the non-damping
case is also invariant under D̂T if E(t + t0) = E(−t + t0). A new symmetry appears in the
overdamped limit (α → ∞). In that case the equation of motion can be rewritten as Ẋ +
V ′

PN(X) + Ẽ(t) = 0. The symmetry can be written as follows:

D̂I : t → −t + t0, X → X + 1/2, (13)

and equation (12) is invariant under this symmetry if

E(t + t0) = −E(−t + t0), V ′
PN(X) = −V ′

PN(X + 1/2). (14)

If V ′
PN(X) ∼ sin 2πX the second condition is satisfied. Thus, in the overdamped case both (6)

and (14) must be violated if we want to obtain directed kink motion.

3.1 Numerical simulations

Verification of the above considerations has been performed via numerical integration of the DSG
equation (11) in the presence of weak noise (similarly as in the previous section for the continuous
SG) by adding an stochastic term ξn(t) [〈ξn(t)〉 = 0, 〈ξn(t)ξm(t′)〉 = 2αDδmnδ(t− t′)] to each of
equations (11). Results of simulations are shown in Fig. 4. We clearly observe directed motion
of a kink in the case of two mixed harmonics and absence of such motion when the driving
field E(t) consists from only one harmonic. Motion of an antikink for the same parameters
occurs in the opposite direction with the same absolute value of the average velocity.

Emergence of the directed kink motion is caused by desymmetrization of basins of attraction
of two limit cycles with opposite velocities. For one-particle ratchets it has been shown in [3,12].
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Figure 6. Kink velocity as a function of the driving amplitude E1 = E2 for θ = 2 and θ = −0.5. Other
parameters are: ω = 0.35, α = 0.1, κ = 1. The inset shows more detailed picture for the θ = −0.5 case.
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Figure 7. Average kink velocity as a function of the phase θ at ω = 0.35, E1 = E2 = 0.2, and different
values of damping: α = 0.05 (upper panel),α = 0.2 (middle panel) and α = 0.5 (bottom panel).

As long as symmetry is broken (by switching to E2), one of the basins of attraction begins to
shrink and eventually disappears. Thus, only limit cycles which correspond to motion in one
direction survive, as shown in Fig. 5. We see that already for rather weak desymmetrizations
only one attractor survives.

In Fig. 6 we plot the kink velocity as a function of the driving amplitude. We observe certain
differences compared to the case of continuous SG (see also [13] for details on damped DSG):
a depinning threshold exists, while for the continuous case 〈v〉 ∼ E2

1E2, e.g. kink can move for
an arbitrarily small applied field. Since kink dynamics is locked to the driving frequency ω,
the steps in the figure correspond to the rational multipliers of ω/(2π) and the dependence has
a form of “devils staircases”. After certain critical threshold E1 = E2 ∼ 0.3 is passed, dynamics
becomes chaotic and there is no kink solutions.

In Fig. 7 we plot average kink velocity as a function of the phase θ. Note that dependence of
the kink velocity on the system parameters is no longer smooth. This is the result that dynamics
is locked to the time-periodic driving field. Thus, the function 〈v〉(θ) only slightly resembles the
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sine function, especially for strong dampings when depinning of the kink requires very strong
fields. In the underdamped limit α → 0 directed motion disappears approximately at θ = 0,±π,
when D̂T is restored: E(t) = E(−t). Note that the same happens in the continuum case. In
the overdamped limit α → ∞ directed motion disappears approximately at θ = ±π/2, when the
symmetry D̂I is restored: E(t) = E1 cos ωt + E2 cos(2ωt + π/2) = −E(π/ω − t).

4 Conclusions

We have considered a way to produce a directed motion of a topological soliton (in both discrete
and continuous media) in the presence of damping, using an appropriate AC driving force of
zero mean. The effect has been demonstrated for both continuous and discrete SG equations,
but can be extended to other kink-bearing models. We have shown that in order to get di-
rected soliton propagation it is necessary to break certain symmetries of the driving field E(t)
and have confirmed our findings both analytically and numerically. The phenomenon can be
observed experimentally in an AC biased annular long Josephson junction or annular 1D array
of inductively coupled parallel small Josephson junctions.
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