On *-Representations of Algebras of Temperley-Lieb Type and Algebras Generated by Linearly Dependent Generators with Given Spectra

Anton S. MELLIT, Yurii S. SAMOĬLENKO and Maxim V. ZAVODOVSKY

Institute of Mathematics of NAS Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine
E-mail: mellit@imath.kiev.ua, yurii_sam@imath.kiev.ua, mzv@imath.kiev.ua

Abstract

Algebras of Temperley-Lieb type and algebras generated by linearly dependent generators with a given spectra are presented in this paper. We consider their *-representations and sets of parameters, for which *-representations exist. Examples of algebras are considered.

1 Introduction

Let $\left\{A_{k}\right\}_{k=1}^{n}$ be a set of linear operators in separable complex Hilbert space H with scalar sum $\sum_{k=1}^{n} A_{k}=\lambda I_{H}$ and a restriction that spectrum of each A_{k} belongs to a certain finite set $M_{k} \subset \mathbb{C}$. Such sets of operators play an important role in analysis, algebraic geometry, operator theory and mathematical physics [1-3].

Algebras, generated by linearly connected generators with given spectra were introduced and studied in [5-10]. Particularly, results on their growth, existence of polynomial identities, representations etc. where obtained. Following scheme presented in [11,12]. In Sections 2, 3 we introduce connections of these algebras with Temperley-Lieb algebras. We study their representations and sets of parameters for which representations exist. In Sections 4-6 we consider examples of algebras including algebras connected with extended Dynkin diagrams.

2 Homomorphisms of algebras $\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$ and $\mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}$

Consider $*$-algebra, generated by n self-adjoint elements a_{i} for $i=1, \ldots, n$ which satisfy corresponding restrictions on spectra $\sigma\left(a_{i}\right) \subseteq\left\{x_{0}^{(i)}, \ldots, x_{m_{i}}^{(i)}\right\}=M_{i}$ for given finite sets of real numbers $x_{0}^{(i)}<\cdots<x_{m_{i}}^{(i)}$ and relation $\sum_{i=1}^{n} a_{i}=\lambda e, \lambda \in \mathbb{R}$.

Without loss of generality we shall think, that $x_{k}^{(i)}>0$ and $x_{0}^{(i)}=0$ where $i=1, \ldots, n$, $k=1, \ldots, m_{i}$. We consider $\lambda>0$ (for if $\lambda<0$ representations of such algebra do not exist and if $\lambda=0$ there are only trivial ones).

Each element a_{i} can be presented in a form $a_{i}=\sum_{k=1}^{m_{i}} x_{k}^{(i)} p_{k}^{(i)}$, where $p_{k}^{(i)}$-projection, $p_{k}^{(i)} p_{l}^{(i)}=0$, $k \neq l, k, l=1, \ldots, m_{i}$.

In [5] the following algebra generated by projections was introduced:

$$
\begin{gathered}
\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}=\mathbb{C}\left\langle p_{1}^{(1)}, \ldots, p_{m_{1}}^{(1)}, p_{1}^{(2)}, \ldots, p_{m_{2}}^{(2)}, \ldots, p_{1}^{(n)}, \ldots, p_{m_{n}}^{(n)}\right| \sum_{i=1}^{n} \sum_{k=1}^{m_{i}} x_{k}^{(i)} p_{k}^{(i)}=\lambda e, \\
\left.p_{k}^{(i)} p_{l}^{(i)}=0(l \neq k), p_{k}^{(i) 2}=p_{k}^{(i)}, l, k=1, \ldots, m_{i}, i=1, \ldots, n\right\rangle .
\end{gathered}
$$

With every such algebra we associate a graph (or diagram) $G=G\left(\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}\right)$ which consists of one root vertex and n branches, i-th branch is a sequence of $\operatorname{Card}\left(M_{i}\right)-1$ connected vertices.

We mark vertices of i-th branch with nonzero real numbers of set M_{i} starting from root in descending order. Also we mark root vertex with λ.

Define $N_{j}=\frac{1}{\lambda} M_{j}=\left\{0<\frac{x_{1}^{(j)}}{\lambda}<\cdots<\frac{x_{m_{j}}^{(j)}}{\lambda}\right\}, j=1, \ldots, n$. Consider algebra $\mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}$ generated by projections p and $q_{k}^{(i)}$, where $k=1, \ldots, m_{i}, i=1, \ldots, n$

$$
\begin{aligned}
\mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}= & \mathbb{C}\left\langle q_{1}^{(1)}, \ldots, q_{m_{1}}^{(1)}, q_{1}^{(2)}, \ldots, q_{m_{2}}^{(2)}, \ldots, q_{1}^{(n)}, \ldots, q_{m_{n}}^{(n)}, p\right| \sum_{i=1}^{n} \sum_{k=1}^{m_{i}} q_{k}^{(i)}=e, \\
& q_{k}^{(i)} p q_{k}^{(i)}=\frac{x_{k}^{(i)}}{\lambda} q_{k}^{(i)}, q_{k}^{(i)} p q_{l}^{(i)}=0(l \neq k), p^{2}=p, q_{k}^{(i) 2}=q_{k}^{(i)}, \\
& q_{k}^{(i)} q_{s}^{(j)}=0\left((i, k) \neq((j, s)), k, l=1, \ldots, m_{i}, s=1, \ldots, m_{j}, i, j=1, \ldots, n\right\rangle .
\end{aligned}
$$

These algebras are called abo-analogs ("all but one").
Proposition 1. There exists a homomorphism of algebras

$$
\varphi_{1}: \mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda} \longrightarrow p \mathcal{P}_{N_{1}, \ldots, N_{n}, a b o} p,
$$

which is defined on generators in the following way

$$
\varphi_{1}\left(p_{k}^{(i)}\right)=\frac{\lambda}{x_{k}^{(i)}} p q_{k}^{(i)} p .
$$

Assume $\mathrm{q}=\operatorname{diag}\left(p_{1}^{(1)}, \ldots, p_{m_{1}}^{(1)}, \ldots, p_{1}^{(n)}, \ldots, p_{m_{n}}^{(n)}\right) \in \mathrm{M}_{m}\left(\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}\right), m=\sum_{i=1}^{n} m_{i}$ and $e_{i, j}$ is matrix unity in $\mathrm{M}_{m}\left(\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}\right)$.

Proposition 2. There exists a homomorphism of algebras

$$
\varphi_{2}: \mathcal{P}_{N_{1}, \ldots, N_{n}, a b o} \longrightarrow q \mathrm{M}_{m}\left(\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}\right) q,
$$

which is defined on generators in the following way

$$
\begin{aligned}
& \varphi_{2}\left(q_{k}^{(i)}\right)=p_{k}^{(i)} \otimes \mathrm{e}_{k+t_{i}, k+t_{i}}, \\
& \varphi_{2}(p)=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m_{i}} \sum_{l=1}^{m_{j}} \frac{\sqrt{x_{k}^{(i)} x_{l}^{(j)}}}{\lambda} p_{k}^{(i)} p_{l}^{(j)} \otimes \mathrm{e}_{k+t_{i}, l+t_{j}},
\end{aligned}
$$

where $t_{i}=\sum_{j<i} m_{j}$.
Remark 1. If we introduce involution " $*$ " on algebras $\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$ and $\mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}$ in the obvious way (by assuming all generators to be self-adjoint), then homomorphisms φ_{1} and φ_{2} appear to be $*$-homomorphisms of $*$-algebras.

3 Equivalence of categories $\operatorname{Rep} \mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$ and $\operatorname{Rep} \mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}$

With the help of homomorphisms φ_{1} and φ_{2} it is possible to build corresponding functors on categories of representations [11].

Given a homomorphism of algebras $\varphi: \mathcal{A}_{1} \longrightarrow \mathcal{A}_{2}$, there exists a functor $F: \operatorname{Rep} \mathcal{A}_{2} \longrightarrow$ $\operatorname{Rep} \mathcal{A}_{1}$ defined by rules $F(\pi)=\pi \circ \varphi$ and $F(K)=K$, where $\pi \in \operatorname{Ob}\left(\operatorname{Rep} \mathcal{A}_{2}\right)$ and K is a morphism in the category $\operatorname{Rep} \mathcal{A}_{2}$.

Assume \mathcal{A} to be an algebra and q to be an idempotent in \mathcal{A}. Then $\mathcal{B}=q \mathcal{A} q$ is algebra with unit q. For $\pi \in \operatorname{Rep} \mathcal{A}$ we can define representation $\widehat{\pi} \in \operatorname{Rep} \mathcal{B}$ in space $\operatorname{Im} \pi(q)$ by $\widehat{\pi}(x)=\left.\pi(x)\right|_{\operatorname{Im} \pi(q)}$ for all $x \in \mathcal{B}$. If K is the intertwining operator between representations π_{1} and π_{2}, then $\left.K\right|_{\operatorname{Im} \pi(q)}$ is the intertwining operator between representations $\widehat{\pi_{1}}$ and $\widehat{\pi_{2}}$. Thus we constructed a functor from the category $\operatorname{Rep} \mathcal{A}$ to $\operatorname{Rep} \mathcal{B}$.

Let \mathcal{A} be an algebra, $\pi: \mathcal{A} \longrightarrow L(H)$ be a representation in space H. Construct a functor $F: \operatorname{Rep} \mathcal{A} \longrightarrow \operatorname{Rep} M_{n}(\mathcal{A})\left(\right.$ where $M_{n}(\mathcal{A})=\mathcal{A} \otimes M_{n}(\mathbb{C})$ is the algebra of matrices over $\left.\mathcal{A}\right)$. Define a representation $\widetilde{\pi}: M_{n}(\mathcal{A}) \longrightarrow L(H \oplus \cdots \oplus H)$ by $\widetilde{\pi}(a \otimes b)=\pi(a) \otimes b$, where $a \in \mathcal{A}$ and $b \in M_{n}(\mathbb{C})$. Put $F(\pi)=\widetilde{\pi}$ and $F(K)=K \otimes I_{n}$, where K is a morphism in the category \mathcal{A} and I_{n} is the identity operator in $M_{n}(\mathcal{A})$.

Given two algebras \mathcal{A}_{1} and \mathcal{A}_{2}, let q be an idempotent in $M_{n}\left(\mathcal{A}_{2}\right)$. For a homomorphism of algebras $\varphi: \mathcal{A}_{1} \longrightarrow q M_{n}\left(\mathcal{A}_{2}\right) q$, with the previous techniques a functor $F_{\varphi}: \operatorname{Rep} \mathcal{A}_{2} \longrightarrow$ $\operatorname{Rep} \mathcal{A}_{1}$ can be easily constructed. If $\pi: \mathcal{A}_{2} \longrightarrow L(H)$, then $F_{\varphi}(\pi): \mathcal{A}_{1} \longrightarrow L(\mathcal{H})$, where $\mathcal{H}=\widetilde{\pi}(q)(H \oplus \cdots \oplus H)$. We will identify the algebra $L(\mathcal{H})$ with an algebra of operators A in $L(H \oplus \cdots \oplus H)$, such that $\widetilde{\pi}(q) A=A \widetilde{\pi}(q)=A$. If K is a morphism in the category Rep \mathcal{A}_{2}, then $F_{\varphi}(K)=\left.\left(K \otimes I_{n}\right)\right|_{\mathcal{H}}$.

Proposition 3. Functors $F_{\varphi_{1}}$ and $F_{\varphi_{2}}$ give equivalence of the categories $\operatorname{Rep} \mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$ and $\operatorname{Rep} \mathcal{P}_{N_{1}, \ldots, N_{n}, a b o}$.

Remark 2. Proposition 3 remains true if we replace categories of representations with categories of $*$-representations of corresponding $*$-algebras with involution defined as in Remark 1.

Let

$$
\mathrm{W}=\left\{\lambda \in \mathbb{R} \mid *-\operatorname{Rep} \mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda} \neq \varnothing\right\}, \quad \widetilde{\mathrm{W}}=\left\{\lambda>0 \left\lvert\, *-\operatorname{Rep} \mathcal{P}_{\frac{M_{1}}{\lambda}, \ldots, \frac{M_{n}}{\lambda}, a b o} \neq \varnothing\right.\right\} .
$$

Theorem 1. $\mathrm{W}=\widetilde{\mathrm{W}} \cup\{0\}$.

4 Sums of projections

Let M_{i} for $i=1, \ldots, n$ be a sequence of sets of nonnegative real numbers containing zero. We denote by $W_{M_{1}, \ldots, M_{n}}$ the set of all real numbers λ such that there exists a separable Hilbert space H and a sequence $A_{i}, i=1, \ldots, n$ of self-adjoint operators in H such that $\sum_{i=1}^{n} A_{i}=\lambda I_{H}$ and $\sigma\left(A_{i}\right) \subset M_{i}$, i.e. there exist $*$-representations of $*$-algebra $\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$. Let $\widetilde{W}_{M_{1}, \ldots, M_{n}}$ be the corresponding set of all $\lambda>0$ for which $*$-representations of $\mathcal{P}_{\frac{M_{1}}{\lambda}}, \ldots, \frac{M_{n}}{\lambda}, a b o$, exist together with a single element 0 . Theorem 1 states that $\widetilde{W}_{M_{1}, \ldots, M_{n}}=W_{M_{1}, \ldots, M_{n}}$

Consider several examples of description of sets $W_{M_{1}, \ldots, M_{n}}$ and $\widetilde{W}_{N_{1}, \ldots, N_{n}}$ for some sequences $\left(M_{i}\right), i=1, \ldots, n$.

1. Let $M_{1}=\cdots=M_{4}=\{0,1\}$, then

$$
\mathcal{P}_{M_{1}, M_{2}, M_{3}, M_{4} ; \lambda}=\mathbb{C}\left\langle p_{1}, p_{2}, p_{3}, p_{4} \mid p_{1}+p_{2}+p_{3}+p_{4}=\lambda e, p_{i}^{2}=p_{i}^{*}=p_{i}\right\rangle,
$$

and $*$-representations of such algebras are orthogonal projections with sum λI_{H}. The algebra $\mathcal{P}_{M_{1}, M_{2}, M_{3}, M_{4} ; \lambda}$ corresponds to the diagram \widetilde{D}_{4}.

The abo-analog for this algebra is

$$
\begin{aligned}
& \mathcal{P}_{N_{1}, N_{2}, N_{3}, N_{4}, a b o}=\mathbb{C}\left\langle q_{1}, q_{2}, q_{3}, q_{4}, p\right| q_{1}+q_{2}+q_{3}+q_{4}=e, q_{i} p q_{i}=\frac{1}{\lambda} q_{i}, \\
&\left.q_{i}^{2}=q_{i}^{*}=q_{i}, i=1,2,3,4, p^{2}=p^{*}=p, q_{i} q_{j}=0(i \neq j)\right\rangle .
\end{aligned}
$$

Description of set $W_{M_{1}, M_{2}, M_{3}, M_{4}}$ was presented in [4]. We present it in our terms in the following proposition.

Proposition 4. Assume $M_{1}=M_{2}=M_{3}=M_{4}=\{0,1\}$ and $S=\left\{\frac{1}{2}, 1\right\}$. Then

$$
\widetilde{W}_{M_{1}, M_{2}, M_{3}, M_{4}}=W_{M_{1}, M_{2}, M_{3}, M_{4}}=\left\{\left.2 \pm \frac{1}{k+s} \right\rvert\, k \in \mathbb{N} \cup\{0\}, s \in S\right\} \cup\{2\} .
$$

2. Let $M_{1}=M_{2}=M_{3}=\{0,1\}, M_{4}=\{0,1,2\}$. Algebra $\mathcal{P}_{M_{1}, M_{2}, M_{3}, M_{4} ; \lambda}$ corresponds to the diagram

Description of $W_{M_{1}, M_{2}, M_{3}, M_{4}}$ can be found in [9]. In our terms:
Proposition 5. If $M_{1}=M_{2}=M_{3}=\{0,1\}, M_{4}=\{0,1,2\}$ then

$$
\widetilde{W}_{M_{1}, M_{2}, M_{3}, M_{4}}=W_{M_{1}, M_{2}, M_{3}, M_{4}}=\Lambda_{4} \cup[2,3] \cup\left(5-\Lambda_{4}\right),
$$

where $\Lambda_{4}=\left\{\left.2-\frac{1}{k+s} \right\rvert\, k \in \mathbb{N} \cup\{0\}, s \in\left\{\frac{1}{2}, 1\right\}\right\}$.
3. Consider *-algebra generated by n projections with scalar sum. Let $M_{1}=\cdots=M_{n}=$ $\{0,1\}$, then

$$
\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}=\mathbb{C}\left\langle p_{1}, \ldots, p_{n} \mid \sum_{i=1}^{n} p_{i}=\lambda e, p_{i}^{2}=p_{i}^{*}=p_{i}\right\rangle .
$$

Its corresponding diagram is:

From [6] we conclude the following:
Proposition 6. If $M_{1}=\cdots=M_{n}=\{0,1\}$ then

$$
\widetilde{W}_{M_{1}, \ldots, M_{n}}=W_{M_{1}, \ldots, M_{n}}=\left\{\Lambda_{n}^{(0)}, \Lambda_{n}^{(1)},\left[\frac{n-\sqrt{n^{2}-4 n}}{2}, \frac{n+\sqrt{n^{2}-4 n}}{2}\right], n-\Lambda_{n}^{(0)}, n-\Lambda_{n}^{(1)}\right\},
$$

where $\Lambda_{n}^{(i)}=\left\{i, 1+\frac{1}{n-1-i}, 1+\frac{1}{n-2-\frac{1}{n-1-i}}, 1+\frac{1}{n-2-\frac{1}{n-2-\frac{1}{n-1-i}}}, \ldots\right\}$ for $i=0,1, n \in \mathbb{N}$.

5 Sums of operators with spectrum $\{0,1,2\}$

1. Let $M_{1}=M_{2}=M_{3}=\{0,1,2\}$. Consider algebra $\mathcal{P}_{M_{1}, M_{2}, M_{3} ; \lambda}$. Corresponding diagram is \widetilde{E}_{6} :

Description of $W_{M_{1}, M_{2}, M_{3}}$ was given in [9]:
Proposition 7. If $M_{1}=M_{2}=M_{3}=\{0,1,2\}$, let $S=\left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$. Then

$$
\widetilde{W}_{M_{1}, M_{2}, M_{3}}=W_{M_{1}, M_{2}, M_{3}}=\left\{\left.3 \pm \frac{1}{k+s} \right\rvert\, k \in \mathbb{N} \cup\{0\}, s \in S\right\} \cup\{3\} .
$$

2. Consider $*$-algebra $\mathcal{P}_{M_{1}, \ldots, M_{n} ; \lambda}$ for $M_{1}=\cdots=M_{n}=\{0,1,2\}$, it corresponds to the diagram:

Proposition 8 ([9]). If $M_{1}=\cdots=M_{n}=\{0,1,2\}$, then

$$
\begin{aligned}
& \widetilde{W}_{M_{1}, \ldots, M_{n}}=W_{M_{1}, \ldots, M_{n}}=\left([0,2] \cap \Sigma_{n}\right) \cup[2,2 n-2] \cup\left(2 n-\left([0,2] \cap \Sigma_{n}\right)\right) \\
& =\Lambda_{n}^{(0)} \cup \Lambda_{n}^{(1)} \cup\left[n-\frac{n+\sqrt{n^{2}-4 n}}{2}, n+\frac{n+\sqrt{n^{2}-4 n}}{2}\right] \cup\left(2 n-\Lambda_{n}^{(0)}\right) \cup\left(2 n-\Lambda_{n}^{(1)}\right) .
\end{aligned}
$$

6 Extended Dynkin diagrams E_{7} and E_{8}

1. Let $M_{1}=M_{2}=\{0,1,2,3\}, M_{3}=\{0,2\}$. Considering algebra $\mathcal{P}_{M_{1}, M_{2}, M_{3} ; \lambda}$ we get diagram \widetilde{E}_{7} :

Proposition 9. If $M_{1}=M_{2}=\{0,1,2,3\}, M_{3}=\{0,2\}$ and $S=\left\{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, 1\right\}$ then

$$
\widetilde{W}_{M_{1}, M_{2}, M_{3}}=W_{M_{1}, M_{2}, M_{3}}=\left\{\left.4 \pm \frac{1}{k+s} \right\rvert\, k \in \mathbb{N} \cup\{0\}, s \in S\right\} \cup\{4\} .
$$

2. Let $M_{1}=\{0,1,2,3,4,5\}, M_{2}=\{0,2,4\}$ and $M_{3}=\{0,3\}$. Consider $\mathcal{P}_{M_{1}, M_{2}, M_{3} ; \lambda}$ Its corresponding diagram is \widetilde{E}_{8}

Proposition 10. If $M_{1}=\{0,1,2,3,4,5\}, M_{2}=\{0,2,4\}, M_{3}=\{0,3\}$ and $S=\left\{\frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}\right.$, $\left.\frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, 1\right\}$ then

$$
\widetilde{W}_{M_{1}, M_{2}, M_{3}}=W_{M_{1}, M_{2}, M_{3}}=\left\{\left.6 \pm \frac{1}{k+s} \right\rvert\, k \in \mathbb{N} \cup\{0\}, s \in S\right\} \cup\{6\} .
$$

[1] Ewans D. and Kawahigashi Y., Quantum symmetries on operator algebras, New York, Oxford Univ. Press, 1998.
[2] Fulton W., Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. of the AMS, 2000, V.37, N 3, 209-249.
[3] Klyachko A.A., Stable bundles, representation theory and Hermitian operators, Selecta Math., 1998, V.4, 419-445.
[4] Ostrovsky V.L. and Samoilenko Yu.S., Introduction to the theory representation of finitely presented $*$-algebras. 1. Representations by bounded operators, Rev. Math. \& Math. Phys., 1999, V.11, 1-261.
[5] Rabanovich V.I. and Samoilenko Yu.S., When a sum of idempotents or projectors is a multiple of identity, Funktsional. Anal. i Prilozhen., 2000, V.34, N 4, 91-93.
[6] Kruglyak S.A., Rabanovich V.I. and Samoilenko Yu.S., On sums of projectors, Funktsional. Anal. i Prilozhen., 2002, V.36, N 3, 30-35.
[7] Kruglyak S.A. and Roiter A.V., Local-scalar reppresentations of graphs in category Hilbert spaces, Preprint, Kyiv, Institute of Mathematics of NAS of Ukraine, 2003.
[8] Mellit A.S., On the case where a sum of three partial reflections is equal to zero, Ukr. Math. J., 2003, V.55, N 9, 1277-1283.
[9] Mellit A.S., Rabanovich V.I. and Samoilenko Yu.S., When sum partial reflection multiple to identity operator, Funktsional. Anal. i Prilozhen., 2004, V.38, N 2, 80-82.
[10] Vlasenko M.A., Mellit A.S. and Samoilenko Yu.S., On algebras, generated by linearly connected generators with given spectrum, Functsional. Anal. i Prilozhen., 2004, V.38, N 4, 33-42.
[11] Popovych S.V. and Samoilenko Yu.S., On homomorphisms of algebras generated by projections and Coxeter functors, Ukr. Math. J., 2003, V.55, N 9, 1224-1237.
[12] Zavodovsky M.V., On algebras of Temperley-Lieb type, Ukr. Math. J., 2004, V.59, N 5, 736-743.

