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CP N−1 Harmonic Maps and the Weierstrass System
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We present a Weierstrass-like system of equations corresponding to the CPN−1 harmonic
maps. This system consists of four first-order equations for three complex functions which
are shown to be equivalent to the CPN−1 harmonic maps. When the harmonic maps are
holomorphic (or antiholomorphic) one of the functions vanishes and the system of equations
reduces to the generalisation of the Weierstrass problem given in [1]. We also discuss a geo-
metrical interpretation of our results and show that the induced metric is proportional to
the total energy density of the map.

1 Introduction

This talk is based on our recent paper [2] which is shortly to be published in the Journal of
Mathematical Physics. In this paper we discuss two interesting ideas: the CP 1 harmonic maps
and their relation to the Weierstrass System. We then show how to generalise this idea to the
CPN−1 case.

The original idea of looking at this problem was initiated a few years ago by Konopelchenko
who, together with his collaborators [3,4], introduced the subject of Weierstrass representations
of surfaces immersed in multidimensional spaces. This has generated a lot of interest [5, 6] and
has led to the connection with the CPN−1 harmonic maps [1, 2].

These generalisations have also lead to the study of immersed surfaces, whose metric is related
to the properties of the corresponding harmonic maps. As is well known (see e.g. [7]), in the
CP 1 case all harmonic maps (from S2) are holomorphic (or antiholomorphic). In the CP 1 case
the induced metric is characterised by the holomorphic component of the energy thus showing
that, in this case, this characterisation is complete.

Our generalisation [2] covers the case of both holomorphic and non-holomorphic maps for, as is
known [7], in the CPN−1 case (for N > 2) there are harmonic maps which are not holomorphic
(or antiholomorphic). We explain in some detail, how when the maps are holomorphic, our
generalisation reduces to the one given before [1].

In the next section we briefly review the CPN−1 harmonic maps (using the formalism as
given in [7]) and in the following sections relate these maps to our version of the Weierstrass
problem.

2 CP N−1 harmonic maps

CPN−1 harmonic maps are maps

S2 → CPN−1 (1)
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given by the stationary points of the energy

L =
∫
Ldx dy, (2)

where

L =
1
4
(Dµz)† ·Dµz. (3)

The differential operator Dµ in (3) acts on ψ : S2 → CPN−1 as follows:

Dµψ = ∂µψ − ψ(z† · ∂µz). (4)

Here, µ = 1, 2, and denotes the space coordinates x and y. Moreover, z is a vector field with
N components, z = (z1, . . . , zN ), which is normalised to 1; i.e. we have

z† · z = 1. (5)

Note that for N = 2, i.e. for CP 1 ∼ S2, we can introduce a complex field W

z =
(1,W )√
1 + |W |2 . (6)

Then, (for CP 1) the Euler Lagrange equations describing harmonic maps are given by

∂∂̄W − 2W̄
∂W∂̄W

|W |2 + 1
= 0. (7)

where W = W (ζ, ζ̄) and where

∂ =
∂

∂(x+ iy)
=

∂

∂ζ
, ∂̄ =

∂

∂ζ̄
. (8)

Clearly, solutions of (7) are given by

W = W (ζ) (9)

or

W = W (ζ̄) (10)

i.e. holomorphic and antiholomorphic functions. What is less clear, however, is that all solu-
tions on S2 are like this; i.e. there are no harmonic functions which are not holomorphic or
antiholomorphic.

This, however, is not the case for the CPN−1 model [7] for N > 2.

3 The Weierstrass system (WS)

To define a WS we consider solutions of a system of equations for 2 complex functions

ψ = ψ(ζ, ζ̄) (11)

and

φ = φ(ζ, ζ̄), (12)
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which satisfy the following set of first-order equations:

∂ψ = pφ, ∂̄φ = −pψ, p = |φ|2 + |ψ|2. (13)

Note that ∂̄ψ, or ∂φ have not been specified.
A natural question then arises. Are these two problems related? Obviously the answer is

YES. To see this we put

W =
ψ

φ̄
(14)

and then find that

ψ = W
(∂̄W̄ )

1
2

1 + |W |2 , φ =
(∂W )

1
2

1 + |W |2 (15)

satisfy (13).
Moreover, we can also show that the equations of the two systems are fully equivalent.

4 Geometry

To discuss geometrical aspects of the Weierstrass problem [3], and to relate it to the properties
of the CP 1 maps, we introduce 3 real functions

X1 = i

∫
γ
[ψ̄2 + φ2]dζ − [ψ2 + φ̄2]dζ̄, (16)

X2 =
∫

γ
[ψ̄2 − φ2]dζ + [ψ2 − φ̄2]dζ̄, (17)

and

X3 = −2
∫

γ
ψ̄φdζ + ψφ̄dζ̄, (18)

where γ is any curve from a fixed point to ζ.
It is now easy to show that if ψ and φ satisfy the equations of the WS then Xi do not depend

on the details of the curve γ but only on its endpoints.
Next we treat Xi as components of �r = (X1, X2, X3) and introduce the metric

gζζ = (∂�r, ∂�r), gζ̄ζ̄ = (∂̄�r, ∂̄�r), gζζ̄ = (∂�r, ∂̄�r). (19)

Then, the detailed calculations show that only gζζ̄ is non-zero and that

gζζ̄ =
|∂W |2

(1 + |W |2)2 = |Dz|2. (20)

Here D denotes Dµ evaluated with respect to ζ.
Note that, as all harmonic CP 1 maps on S2 satisfy W = W (ζ) and gζζ̄ is the total energy of

the map (for antiholomorphic maps we take complex conjugates).
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5 The CP N−1 case. Some general points

Next we consider the general CPN−1 case. Now we have more components, ie if we define z = f
|f |

then f has N components.
Note also that harmonic maps are not necessarily holomorphic or antiholomorphic. ie the

equation
(

1 − f ⊗ f †

|f |2
)[

∂∂̄f − ∂f
(f † · ∂̄f)

|f |2 − ∂̄f
(f † · ∂f)

|f |2
]

= 0, (21)

has solutions other than f = f(ζ) or f = f(ζ̄).
So what should we do? What should we take for functions ψ and φ and how many of

them should we use? And how to avoid, in the geometrical interpretation, getting only the
holomorphic component of the map which was sufficient in the CP 1 case but which is not for
CPN−1.

6 Our procedure [2]

To discuss our procedure [2] it is convenient to rewrite the equations of the CPN−1 model in
terms of the ‘projector formalism’ (see e.g. [7]). Thus we introduce

P =
f ⊗ f †

|f |2 , P † = P, P 2 = P. (22)

Then, as is easy to check, the equations for the harmonic maps, i.e. (21) are equivalent to

[∂∂̄P, P ] = 0. (23)

However, we can rewrite (23) as a conservation law:

∂[∂̄P, P ] + ∂̄[∂P, P ] = 0, (24)

i.e.

∂K − ∂̄K† = 0, (25)

where

K = [∂̄P, P ] =
∂̄f ⊗ f † − f ⊗ ∂̄f †

|f |2 +
f ⊗ f †

|f |4
[
(∂̄f † · f) − (f † · ∂̄f)

]
. (26)

To proceed further it is convenient to put

K = M + L, (27)

where

M = (1 − P )
∂̄f ⊗ f †

|f |2 = (1 − P )∂̄P (28)

and

L = −f ⊗ ∂̄f †

|f |2 (1 − P ) = −∂̄P (1 − P ). (29)
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Next we observe that our matrices M and L satisfy the conservation laws separately, i.e. we
have

∂M = ∂̄M † (30)

and

∂L = ∂̄L†. (31)

Note that the two conservation laws are not really independent; they differ from each other
by a total divergence (as was drawn to our attention by A. Mikhailov [9]). To see this note that
as P is a projector we have

(1 − P )P = P (1 − P ) = 0. (32)

Then

0 = ∂̄{(1 − P )P} = −∂̄PP + (1 − P )∂̄P = −∂̄PP +M (33)

and

0 = ∂̄{P (1 − P )} = ∂̄P (1 − P ) − P ∂̄P = −L− P ∂̄P. (34)

Hence

M = ∂̄PP, L = −P ∂̄P (35)

and so we see that

M − L = ∂̄PP + P ∂̄P = ∂̄P 2 = ∂̄P (36)

thus showing that

M = L+ ∂̄P. (37)

Substituting this into (30) we obtain (31).

7 Exploitation of the conservation laws

Let us write out the matrix elements of M and L (using the summation convention). They are

Mij = Φ̄2
i f̄j (38)

and

Lij = −fiϕ̄
2
j , (39)

where

ϕ2
i =

1
A2
f̄kFki, A = f̄lfl (40)

and

Φ2
i =

1
A2
fkGki. (41)
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In these expression we have introduced:

Fij = fi∂fj − fj∂fi, (42)

and

Gij = fi∂̄fj − fj ∂̄fi. (43)

Note that due to the antisymmetry of Fij and of Gij we have constraints; namely,

f̄kϕ
2
k = 0, fkΦ2

k = 0. (44)

Hence only (N − 1) functions ϕ2
i and (N − 1) functions Φ2

i are linearly independent.
Thus we take as our independent functions, say, ϕ2

2, . . . , ϕ
2
N and Φ2

2, . . . ,Φ
2
N . In addition, we

can set, without any loss of generality, f1 = 1.
Next we note that we can invert the expressions for ϕ2

i and find that

∂fi = A
[
ϕ2

i + fif̄kϕ
2
k

]
(45)

and

∂̄fi = A
[
Φ̄2

i + fi f̄kΦ̄2
k

]
. (46)

These two equations will form part of our Weierstrass system as we discuss in the next section.

8 Relation to the Weierstrass system

Next we use the equations of the CPN−1 model to calculate ∂̄ϕ2
i and ∂̄Φ2

i . We find that

∂̄ϕ2
i = −Aϕ2

i (ϕ
†2 · f) − fi

[(
ϕ†2 · ϕ2) + (f † · ϕ2)(ϕ2† · f

)]
, (47)

and

∂̄Φ2
i = −AΦ2

i (f
† · Φ̄2) − f̄i

[(
Φ†2 · Φ2) + (f † · Φ̄2)(Φ̄†2 · f

)]
, (48)

which, together with (45) and (46) i.e.

∂fi = A
[
ϕ2

i + fif̄kϕ
2
k

]
,

∂̄fi = A
[
Φ̄2

i + fif̄kΦ̄2
k

]
,

constitute our generalisation of the Weierstrass Problem [2]. Here, as usual, A = 1 + (f † · f)
and all indices, and summations, now go only over (2, . . . , N).

Note that our procedure has given us four sets of equations for three sets of complex functions,
fi, ϕj and Φk. The equations fall into two subclasses (those involving ∂fi and ϕj and those
involving ∂f̄i and Φj). Both sets are equivalent to the same equations for fi. Note also that
instead of taking fi we could have introduced new functions ψi and Ψi by, say, ψi = fiϕ̄i and
Ψi = fiΦ̄i. Then our sets of functions would have effectively decoupled.

Let us observe that when fi are holomorphic; i.e. ∂̄fi = 0 then f † · Φ̄2 = 0, implying that
|Φ2|2 = 0. Thus Φ2

i = 0 (in analogy with the original Weierstrass system where we had only φ
and ψ = fφ̄).
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9 Geometrical aspects

Now we follow the procedure from Section 4 and introduce real functions Xi which will be
treated as components of a vector in a larger dimensional space. To do this we introduce the
matrices

V =
∫

γ
Mdζ̄ +

∫
γ
M †dζ (49)

and

W =
∫

γ
Ldζ̄ +

∫
γ
L†dζ (50)

and then, for Xi, we take individual entries of each matrix. As TrM = TrL = 0 V and W
have, each, only N2 − 1 independent entries so our construction gives us two vectors in RN2−1.

Note that W and V do not depend on the contours of integration γ. This, as before, follows
from the conservation laws.

Should we consider the entries of W and V separately and so treat our pair of vectors as one
vector in a higher dimensional space? This would be a possibility but we do not have to go that
far. The reason for this is that, as can be seen by direct calculations, for the solutions (CPN−1

harmonic maps) can add our two vectors and obtain a vector which leads to an induced metric
with good properties.

Thus we consider

X =
∫

γ
(M + L)dζ̄ +

∫
γ
(M † + L†)dζ. (51)

Then we define the induced metric

gαβ =
∑
lk

∂Xkl

∂α

∂Xlk

∂β
, (52)

where α and β stand for ζ or ζ̄.
We find that that for this metric we have

gζζ̄ = |Dz|2 + |D̄z|2, (53)

which is, of course, the total energy of the harmonic map, while the other components, gζζ and
gζ̄ζ̄ , vanish.

The demonstration of this fact is rather complicated as it involves the details of some of the
very specific properties of the CPN−1 harmonic maps. For more details see [2].

10 Conclusions and some general comments

In this talk we have presented a possible generalization of the Weierstrass problem [2]. Let
us stress that this generalization involves more functions than those appearing in the original
Weierstrass problem which is very special. However, the original problem has depended on
the fact that all harmonic maps from S2 to CP 1 are either holomorphic or antiholomorphic –
which is not the case for CPN−1, when N > 2. And even for CP 1 one had to adopt different
approaches to holomorphic and antiholomorphic maps (namely, for antiholomorphic maps we
had to complex conjugate them – to turn them into holomorphic ones). This is not the case in
our construction which holds for all maps.
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We can generalise our procedure to other manifolds, such as other Grassmanian models. This
involves changing the rank of the projector P in (22). A more interesting generalisation involves
establishing the relation to other approaches – say, a lá Bobenko and his collaborators (see
e.g. [10]). Such an approach is currently under active study and we hope to report on it in the
near future [11].
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