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We present approaches to systematic description of PDE that display hidden symmetry, with
reduced equations having additional symmetry operators compared to the initial equations.

1 Introduction

The concept of conditional symmetry was extensively developed recently following the papers [1]
and allowed finding many new solutions of nonlinear differential equations. Here we will consider
another facet of the conditional symmetry – additional symmetry of the reduced equations.

“Hidden symmetry” in various contexts is usually a symmetry not obtainable by some stan-
dard and straightforward procedure applicable to the models in this context. This term shares
the usage of other related terms like “conditional symmetry”, “approximate symmetry”, and
“symmetry” or “invariance” when the same words may denote rather different concepts. Here
we will consider hidden symmetry of partial differential equations similarly to Type II hidden
symmetry of ordinary differential equations according to [2]. With respect to ODE such sym-
metry arises as symmetry of equations with reduced order that is not a symmetry of the original
equations. In the same way, for a PDE it is symmetry of the reduced equation (with reduced
number of independent variables) not present in the original equation.

Definition 1. A differential equation is said to have hidden symmetry under an operator X
if after the process of reduction of the number of independent variables the resulting reduced
equation is invariant under the operator X1 (being the projection of the operator X in new
variables) while the original equation is not invariant under the operator X.

Such symmetry is “classical” in the sense that full hidden symmetry of either ODE or PDE
may be found by consecutive reduction of the original equation and investigation of Lie sym-
metries of the reduced equations, as provided by L. Ovsyannikov’s Submodels programme [3].
“Symmetry” or “Lie symmetry” is determined in accordance to the procedures that may be
found e.g. in [4, 5].

The definition of hidden symmetry can be reformulated in terms of the conditional symmetry
according to the book [6]. Here we also will take into account the result proved in the paper [7]
that conditional invariance of a differential equation under an involutive family of first-order
differential operators Qa is equivalent to possibility of reduction of this equation by means of
the ansatz corresponding to this family of operators. Thus, the additional symmetry under the
operator X1 of the reduced equation (hidden symmetry under the operator X for the original
equation) turns out to be a conditional symmetry of the original equation under conditions
Qa[u] = 0 (Qa[u] designates characteristics of the vector field Qa) with all appropriate differential
consequences. Note that X1 is a Lie symmetry of the reduced equation, and we do not add the
condition X[u] = 0 to the set of conditions, so such operator will not present a purely Q-
conditional symmetry in the sense of [6].

Q-conditional symmetry can also be hidden – that is being a new Q-conditional symmetry
of the reduced equation. For examples of such symmetries see [8].



Group Classification with Respect to Hidden Symmetry 291

In this paper we give an outlook of description of partial differential equations possessing
certain hidden symmetries.

Group classification for classes of differential equations is aimed at identification of equations
having wider symmetries than the equations of the class in general. For an overview of the group
classification problems and the extensive list of related references see [9]. Usually two types of
such problems are considered – finding the equations within a general class that are invariant
under specific symmetry group, and description of all symmetries (up to appropriately chosen
equivalence) of equations that belong to the specific class. On the basis of the known algorithms
for group classification of differential equations in the Lie’s sense we develop approaches for
a systematic description of classes of nonlinear PDEs that display hidden symmetry.

Definition 2. A class of equations can be regarded as general if any local transformations of
dependent and independent variables transform an equation from this class into another equation
within the same class.

An example is the class of all kth-order PDEs F = F (x, u, u
1
, . . . , u

k
) = 0 with x, u being

respectively n- and m-dimensional independent and dependent variables, u
r

being the set of all

rth-order partial derivatives of the function u =
(
u1, u2, . . . , um

)
. Group classification even with

respect to the Lie symmetry for the general classes is usually an overwhelming task, and, to our
knowledge, such problem was completely solved only for single ordinary differential equations by
S. Lie [10]. A restricted, but practically important problem for the general classes of equations
would be description of all equations within the class invariant under some specified symme-
try group that can be done by describing all differential invariants for such group. Similarly,
description of equations having specified Lie symmetry and specified hidden symmetry may be
done by means of conditional differential invariants, as shown in Section 2.

For a more specific class it may be possible to make full group classification of a system
consisting of the original equation together with the reduction conditions of the type Qa[u] = 0
(with appropriate prolongations of the conditions), as shown in the Section 3.

2 Description of all equations in a general class
possessing particular hidden symmetry

The first example is the general first-order partial differential equation with one dependent and
three independent variables of the form

F = F (x, y, z, u, ux, uy, uz) = 0. (1)

We describe all such equations having Lie symmetry with respect to the operator ∂x and
hidden symmetry with respect to the operator ∂y after reduction by means of the operator ∂x.
The condition of such Lie and hidden symmetry, according to Definition 1, is invariance of the
equation (1) under the operator ∂y on condition that ux = 0:

∂xF
∣∣
F=0

= 0, ∂yF
∣∣
F=0, ux=0

= 0. (2)

The general solution of the condition (2) will be a function of all invariants of the operators ∂x

and ∂y, that is z, u, ux, uy, uz, and of the conditional invariant r = uxR(y, z, u, ux, uy, uz) (being
an absolute invariant of ∂x), where R is an arbitrary function that is reasonably determined on
the manifold ux = 0:

F (r, z, u, ux, uy, uz) = 0, (3)
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F has to be a function of the invariants of the hidden symmetry operator on the manifold deter-
mined by the reduction condition, and have arbitrary form elsewhere. Note that the function r
in (3) is not arbitrary: we cannot take e.g.

r = R1(y, z, u, ux, uy, uz) = ux
R1

ux

as such R = R1
ux

will be in the general case undetermined on the manifold ux = 0.

Definition 3 ([12]). A function F (x, u, u
1
, . . . , u

k
) is a conditional differential invariant of the

operator Q, if under the conditions G(x, u, u
1
, . . . , u

r
) = 0 the relations Q[F ] = 0, Q[G] = 0 are

satisfied. We take prolongations of the operators of the order max(k, r).

A set of invariants of the order r ≤ k of the operator Q with the conditions G = 0 is called a
generating set of the kth-order conditional differential invariants of Q if all other invariants can
be represented as functions of invariants from this set.

Invariants in such generating set may be both absolute invariants of Q and G-conditional of
the form G(l) ×R(l), where G(l) are derivatives of G of the order l ≤ k− r and R(l) are arbitrary
functions determined on the manifold G(k) = 0 for all values of k.

Number of functionally independent Q-absolute invariants in the generating set of conditional
differential invariants can be calculated similarly to the number of invariants in a functional
basis of absolute differential invariants, as m− 1, where m is the number of variables in the set
x, u, u

1
, . . . , u

k
. Number of linearly independent purely G-conditional invariants is equal to the

number of independent conditions of the type G(l) = 0.
In some cases we would be able to construct a functional basis of conditional invariants, i.e.

the maximal set of functionally independent conditional invariants. That is possible in the case
when we put a requirement that our conditional invariants should be also absolute invariants
of some Lie algebra L, and additional conditions G = 0 in the Definition 3 and their relevant
differential consequences are not invariant under L.

Equation (3) is reduced by means of the operator ∂x to the equation F (0, z, u, 0, uy, uz) = 0
that is invariant with respect to ∂y. If Ry �= 0 in the expression for r in (3) then this equation
is not invariant with respect to the operator ∂y, so such symmetry is purely hidden.

This example is easily generalised for larger order of equations or number of reduction ope-
rators.

The second example is hidden projective symmetry presented by the operator (m �= 0)

A = (x0 − x2)2(∂0 − ∂2) + (x0 − x2)x1∂1

+
imx2

1

2
(u∂u − u∗∂u∗) − (x0 − x2)(u∂u + u∗∂u∗) (4)

for the d’Alembert equation

�u = λu|u|4, (5)

here u = u(x0, x1, x2) is a complex-valued function, |u| = (uu∗)1/2.
The maximal invariance algebra of the equation (5) is the Poincaré algebra extended by the

dilation and charge operators (see e.g. [6] and references therein), with basis operators

pµ = igµν
∂

∂xν
, Jµν = xµpν − xνpµ,

D = xµpµ − i

4
(u∂u + u∗∂u∗), J = i(u∂u − u∗∂u∗), (6)

where µ, ν take the values 0, 1, 2; the summation is implied over the repeated indices (small
Greek letters) in the following way: xνxν ≡ xνx

ν ≡ xνxν = x2
0 −x2

1 −x2
2, gµν = diag (1,−1,−1).
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This equation can be reduced by means of the ansatz (m �= 0)

u = exp
(−im(x0 + x2)

2

)
Φ(x0 − x2, x1) (7)

to the Schrödinger equation

2imΦt + Φxx = Φ|Φ|4, t = x0 − x2, x = x1. (8)

The ansatz (7) corresponds to the following additional condition with its conjugate:

u0 + u2 + imu = 0. (9)

Such reduction allowed construction of numerous new solutions for the nonlinear wave equa-
tion by means of the solutions of a nonlinear Schrödinger equation [11]. Here reduction gives
additional symmetry properties for equation (5), related to the symmetry properties of the
equation (8). This equation is invariant, beside the Galilei algebra and the dilation operator

∂t, ∂x, J1 = i(Φ∂Φ − Φ∗∂Φ∗), G = t∂x + xJ1,

D̂1 = 2t∂t + x∂x − I (here I = i(Φ∂Φ + Φ∗∂Φ∗)) (10)

(see e.g. [6]), under the projective operator equal to the operator A in the new variables t, x, Φ

A1 = t2∂t + tx∂x +
im

2
x2J1 − tI. (11)

This is one of the immediate examples of hidden symmetry: when presence of some conformal-
or projective-type symmetry in a nonlinear equation depends on both the degree of the polyno-
mial nonlinearity and the number of independent variables, such symmetry will exist as hidden
in equations with the degree of the polynomial nonlinearity corresponding to the smaller number
of independent variables. Note that the operator D̂1 in (10) is not a projection of D in (6), but
leads to another hidden symmetry operator D̂ = xµpµ − i(u∂u + u∗∂u∗).

Here we will present full description of Poincaré-invariant equations possessing such hidden
symmetry with respect to the operator (4). This is done by means of conditional differential
invariants introduced in [12]. Note that in our example we do not require Poincaré invariance
of the additional condition itself, so we are able to construct a functional basis of conditional
differential invariants.

We adduce functional bases of differential invariants that may be utilised for construction of
classes of Poncaré-invariant equations with hidden symmetry (4).

First we present according to [13] a functional basis of absolute differential invariants of
the second order for the Poincaré algebra 〈pµ, Jµν〉 (6) and the complex-valued scalar function
u = u(x0, x1, x2). It consists of 17 invariants

u, u∗, uµuµ, u∗
µu∗

µ, �u, �u∗, uµνuµν , uµνu
∗
µν , u∗

µνu
∗
µν , uµuµνuν , u∗

µuµνu
∗
ν ,

uµuµνuνλuλ, u∗
µuµνuνλu∗

λ, uµνuνλuλµ, uµνuνλu∗
λµ, uµνu

∗
νλu∗

λµ, u∗
µνu

∗
νλu∗

λµ. (12)

A functional basis of differential invariants for the Galilei algebra (10), mass m �= 0, of the
second order for the complex-valued scalar function Φ = Φ(t, x) consists of 10 invariants that
can be checked by direct calculation.

For simplification of the expressions for differential invariants we introduced the following
notations: φ = ln Φ, and to ensure that φ is single-valued we choose it so as Im Φ = arctan Re φ

Im φ .
The elements of the functional basis may be chosen as follows:

φ + φ∗, φx + φ∗
x, M1 = 2imφt + φ2

x, M∗
1 , φxx, φ∗

xx,
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θ = imφtx + φxφxx, θ∗, M2 = −m2φtt + 2imφxφtx + φ2
xφxx, M∗

2 . (13)

A functional basis of differential invariants for the Galilei algebra extended by the dilation
operator (10) and the projective operator (11) may be chosen as follows:

N1e
−4(φ+φ∗),

N1

N∗
1

,
N2

N2
1

,
N∗

2

(N∗
1 )2

,
φxx + φ∗

xx

N1
,

θ

N
3
2
1

,
θ∗

N
3
2
1

,
(φx + φ∗

x)2

N1
,

where

N1 = M1 + φxx = 2imφt + φxx + φ2
x, N2 = φxxN1 +

φ2
xx

2
+ M2. (14)

An algorithm for construction of conditional differential invariants may be derived direct-
ly from the Definition 3. We can construct differential invariants of the Poincaré algebra
〈pµ, Jµν〉 (6) being conditional differential invariants of the projective operator (4) solving the
system

A
2

1F (InvP ) = 0, u0 + u2 + imu = 0,
∂

∂xµ
(u0 + u2 + imu) = 0, µ = 0, 1, 2,

where InvP are all differential invariants (12) of the Poincaré algebra 〈pµ, Jµν〉 (6). Using
the fact that the ansatz (7) is the general solution of the additional condition (9), we can
directly substitute this ansatz into differential invariants (12). The expression �u transforms
into uN1, where N1 is an expression entering into expression for differential invariants (14).
Substituting the ansatz (7) into all elements of the fundamental basis (12) of second-order
differential invariants of the Poincaré algebra, we can obtain a reduced basis of differential
invariants that may be used for construction of all equations reducible by means of this ansatz
to equations possessing the projective symmetry. We can give the following representation of
the Poincaré invariants using expressions Mk (13) and Nk (14):

uµuµ = u2M1, uµu∗
µ =

uu∗

2
(
M1 + M∗

1 − (φx + φ∗
x)2

)
, uµνuµν = u2

(
2M2 + M2

1 + φ2
xx

)
,

uµνu
∗
µν = uu∗

(
M2 + M∗

2 +
1
4
(
M1 + M∗

1 − (φx + φ∗
x)2

)2 − 2(θ + θ∗)(φx + φ∗
x)

+
(
φxx + φ∗

xx)(φx + φ∗
x)2 + φxxφ∗

xx

)
, uµuνuµν = u3

(
M2 + M2

1

)
,

u∗
µu∗

νuµν = uu∗2
(
M2 − 2θ(φx + φ∗

x) + φxx(φx + φ∗
x)2 +

1
4
(
M1 + M∗

1 − (φx + φ∗
x)2

)2
)
,

with similar, however more cumbersome expressions for other invariants. Note that it is conve-
nient to use for expression of the projective conditional invariants not only invariants from the
fundamental basis (12) but also other invariants (that are anyway functions of (12)).

We construct Poincaré-invariant conditional differential invariants of the projective opera-
tor (4) under the condition (9) using differential invariants (13)

I1 = N1e
−4(φ+φ∗) =

�u

u(uu∗)2
, I2 =

N1

N∗
1

=
u∗�u

u�u∗ ,

I3 =
N2

N2
1

=
(

uuµuνuµν +
3
2
u2(�u)2 +

1
2
(uµuµ)2 − 2u�u(uµuµ)

) (
u2(�u)2

)−1
, I∗3 ,

I4 =
(φx + φ∗

x)2

N1
=

uµuµu∗2 + u∗
µu∗

µu2 − 2uµu∗
µuu∗

uu∗2�u
,

I5 =
(φxx + φ∗

xx)
N1

=
u∗�u + u�u∗ − 2uµu∗

µ

u∗�u
, I6 =

θ

2N1
=

( − u3u∗
µu∗

νuµν
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+ u∗2(uuµuνuµν − (uµuµ)2
)

+ (u�u − uµuµ)
(
uµuµu∗2 + u∗

µu∗
µu2 − 2uµu∗

µuu∗)
+ (uuµu∗

µ)2
)(

u2u∗�u(uµuµu∗2 + u∗
µu∗

µu2 − 2uµu∗
µuu∗)1/2

)−1
, I∗6 . (15)

The expressions (15) form a functional basis of invariants that are absolute differential in-
variants for the operators of the extended Poincaré algebra (6) and conditional invariants of
the operator A (4) with the additional condition (9). Functional independence of the expres-
sions (15) can be checked directly, most easily by application of the additional conditions, that
is by substitution of the ansatz (7) into (15), with the “reduced basis” obtained as a result.
The reduced invariants in the basis will depend on new functions without conditions and will
be absolute invariants of the operators 〈G, J, D̂1, A1〉.

Calculation of the number of invariants in such basis may be also considered as follows:

Number of invariants = Number of (variables + derivatives)
− (

Rank of the set of operators
+ Number of independent conditions and their derivatives

)
.

We have 20 dependent variables and derivatives, 8 conditions ((9) with the conjugate and
derivatives), and the rank of the set of operators 〈Jµν , D̂, J, A〉 under the conditions (9) with
the conjugate and derivatives is equal to 6 with all conditions taken into account.

However, the number of conditional differential invariants in the considered example is 8 and
not 6 = 20 − 8 − 6 as it may seem to be. However, if we apply the additional condition (9)
and its first derivatives with respective conjugates (8 conditions) to the fundamental basis of
invariants of the Poincaré algebra (12) (17 invariants), we will obtain 11 independent reduced
invariants, as may be checked by direct calculation. So two of the conditions appear to be
dependent on the manifold of invariants, and with other 3 conditions of invariance with respect
to operators 〈D̂, J, A〉 we obtain 8 invariants in the functional basis of conditional differential
operators. Thus, we arrived to the following statement.

Proposition 1. All equations of the form

F (I1, I2, I3, I
∗
3 , I4, I5, I6, I

∗
6 ) = 0 (16)

are conditionally invariant with respect to the operator A (4) with the additional condition (9).
All equations that are invariant with respect to the algebra (6) and conditionally invariant with
respect to the operator A (4) with the additional condition (9) have the form (16).

Note that in this example we required the equations to be invariant in the Lie sense under the
algebra (6), and the condition (9) is not invariant with respect to this algebra. So we do not have
conditional invariants with arbitrary functions of the type (u0+u2+imu)×(arbitrary function).
In general, if we require some hidden or conditional invariance producing conditional invariants
with arbitrary functions together with some Lie invariance, we may require Lie invariance of
an equation depending on such conditional invariants. Moreover, the operators 〈Jµν , D̂, J, A〉
do not form an algebra, and we would not be able to use absolute differential invariants in the
Lie sense to describe invariant equations similarly to the example of the equation (1) and its
reduction under the operator ∂y.

3 Finding hidden symmetries

“Simple” hidden symmetries (Lie symmetries of reduced equations) for a particular class of
equations can be found by means of consecutive Lie reductions and consecutive finding Lie
symmetries of the reduced equations. Group classification of such class with respect to hidden
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symmetries of reduced equations will involve description of all possible reductions and group
classification of the respective classes of reduced equations. Here we will consider a rather
simple example of the nonlinear wave equation in two spatial dimensions

�u = f(x0, x1, x2, u) (17)

that will allow us to illustrate the proposed algorithm. We present group classification of this
equation with respect to hidden symmetries for reduction by means of the operator ∂x2 .

Such reduction leads to the two-dimensional wave equation u00−u11 = f(x0, x1, u). The next
step is the usual group classification of the reduced equation. It will be more convenient to use
the substitution τ = x0 + x1, ω = x0 − x1 and to go to the equation

uτω = F (τ, ω, u). (18)

The equivalence group of equation (18) (see [14]) consists of the continuous transformations (for
the definitions and calculation procedures of equivalence transformation groups see [4, 15])

τ ′ = T (τ), ω′ = W (ω), u′ = eλu + U(τ, ω), F ′ =
1

Ṫ (τ)Ẇ (ω)
(eλF + Uτω), (19)

where T , W , U are arbitrary (T , W do not take constant values simultaneously) functions of
their arguments and dots over the letters mean derivatives, and discrete transformations τ ′ =
εε1ω+(1−ε)ε2τ , ω′ = εε3τ +(1−ε)ε4ω, u′ = ε5u, F ′ = ε5(εε1ε3+(1−ε)ε2ε4) F (τ ′, ω′, u′) (ε = 0, 1,
εk = ±1, k = 1, 2, . . . , 5), together with products of continuous and discrete transformations.

Group classification of the equation (18) is given in [4] (Fuu = 0) and in [14] (Fuu �= 0).
Such group classification was performed up to transformations from the equivalence group of
the equation. However, if we multiply the resulting inequivalent invariant equations by means
of transformations from the equivalence group (19) that do not belong to the equivalence group
of equation (17) and then add u22 (“reverse reduction”), we will obtain description of equations
with hidden symmetry.

For example, when F = F (ρ1(τ) − ρ2(ω), u), equation (18) is invariant with respect to
the operator Q = ρ′1∂τ + ρ′2∂ω (primes here designate derivatives). So, the equations from the
class (17) �u = f(ρ1(τ)−ρ2(ω), x2, u) will have hidden invariance with respect to the operator Q
with appropriate change of variables in Q. It quite obvious that such transformed Q is not a
Lie symmetry operator for the above equation except if ρ1 = aτ + b, ρ2 = aω + c, a, b, c are
constants.

Similarly, for f = exp (ρ1(τ) + ρ2(ω)) φ(u exp(−ρ1(τ)−ρ2(ω)), x2), there is hidden invariance
of (17) with respect to the operators Q1 = ρ′1∂τ +u∂u, Q2 = ρ′2∂ω+u∂u. Here ρ1, ρ2 are arbitrary
but fixed functions.

We present an algorithm for group classification with respect to hidden symmetry:
Step 1. Obtain reduced equations of for the class of initial PDE.
Step 2. Perform group classification of the reduced equations.
Step 3. Multiply inequivalent invariant reduced equations by means of transformations from

the equivalence group of this class.
Step 4. Reverse of the equation: find equations from the initial class of PDE corresponding

to the multiplied reduced equations.
Step 5. Find all inequivalent equations with respect to transformations from the equivalence

group of the initial class of PDE.

4 Discussion

We see that a nontrivial hidden symmetry for partial differential equations stems from the
reduced equations having wider equivalence group than the original equations. So group classifi-
cation of the classes of equations with respect to hidden symmetry involves study of equivalence
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groups of such classes, in the similar way as it is done for classification with respect to the Lie
symmetry. Description of hidden symmetry of physically interesting classes of equations would
allow to identify wider classes of reducible equations than it is possible by means of group classi-
fication in the Lie sense. The special interest in such classification lies in that reduced equations
often have infinite-dimensional equivalence groups that allows to obtain classes of equations with
hidden symmetry that have large degree of arbitrariness.
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