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In this paper we explore the use of dynamical system techniques, geometric methods and
experimental approaches to estimate the characteristics of brain electrical activity. We as-
sume that the diagnostic information is in the form of a nonlinear time series. Then we
sequentially apply a geometric approach for characterizing dynamical instability, based on
a nonlinear estimation of dynamical characteristics. In addition to characterizing epileptic
seizures, we discuss other diagnostically useful topics including the T-index of the short-term
maximum Lyapunov exponents (STLmax) among critical sites of the cerebral cortex. Dy-
namical instability is here related to curvature fluctuation of the manifolds where geodesics
are natural motion and is described by means of the Jacoby–Levi-Civita geodesic spread.
The methods are illustrated using EEG data previously recorded from transgenic epileptic
mouse.

1 Introduction

Epilepsy, among the most common disorders of the nervous system, affects approximately 1 %
of the population [1–3]. About 25 % of the patients with epilepsy have seizures that are resis-
tant to medical therapy [4]. Epileptic seizures result from a transient electrical discharge of the
brain. These discharges often spread first to ipsilateral, then to contralateral cerebral cortex,
thereby disturbing normal brain function. Clinical effects may include motor, sensory, affective,
cognitive, automatic and physical symptomatology. The occurrence of an epileptic seizure ap-
pears to be unpredictable and the underlying mechanisms that cause seizures to occur are poorly
understood. A recent approach in epilepsy research is to investigate the underlying dynamics
that account for the physiological disturbances in the epileptic brain [5–7].

One of the most promising approaches to understanding of the dynamics of epilepsy is to
determine the dynamical properties of the EEG signal generated by the epileptic brain. The
traditional technique used to solve this problem in time series analysis is to fit a linear model to
the data, and determine the optimal order (dimension) and the optimal parameters of the model.
A simple generalization is to fit the best nonlinear dynamical model. However, the results of
applying this methodology are usually not very illuminating. Without any prior knowledge, any
model that we fit is likely to be ad hoc. We are more interested in questions as the following:
How nonlinear is the time series? How many degrees of freedom does it have?
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The present study was undertaken to develop a geometric methodology for estimating dy-
namical characteristics of an EEG time series and classifying the physiological state (e.g., inter-
seizure state, pre-seizure state, seizure state and post-seizure state) of the human epileptic
brain. This can be accomplished by employing a computer based algorithm that continuously
estimates multiple dynamical measures from the input EEG time series. In addition, in order to
create a modeling technique that incorporates existing information and can be interpreted neu-
rodynamically (robust to noise), we propose a technique based on a combination of dynamics,
geometry, and fiber bundles.

2 Geometrization of the brain dynamics

During the past decade, there has been growing evidence of the independence of the two proper-
ties of instability and predictability of the human brain dynamics. The generic situation of the
brain dynamics is instability of the trajectories in the Lyapunov sense. Nowdays such instability
is called intrinsic stochasticity, or chaoticity, of the brain dynamics and is caused by nonlinearity
of the equation of motion.

In order to characterize the dynamical instability, we first examined some properties that cha-
racterize the EEG signal, including the spectrum of Lyapunov exponents, the energy, geodesics
and fiber bundles. We analyze the parameter spaces as well as related quantities of T-index of
STLmax, Jacoby–Levi-Civita equation, and modeling of EEG time series from the experimental
point of view.

2.1. Spectrum of Lyapunov exponents. The leading Lyapunov exponent [9] λ is defined
as:

λ1(x0) = lim
t→∞ lim

ε→0

1
t

log
(‖〈y(t)〉 − 〈x(t)〉‖

ε

)
, (1)

where y(t) and x(t) are experimental time series of the dynamical system with two initial con-
ditions y(0) and x(0); 〈y(t)〉 and 〈x(t)〉 are ensemble averages; ‖〈y(t)〉− 〈x(t)〉‖ is the Euclidean
distance between 〈y(t)〉 and 〈x(t)〉; ε = ‖〈y(0)〉− 〈x(0)〉‖. The equation (1) remains well defined
in the presence of noise.

To characterize the dynamics from the observed EEG data x(t) we need to find the local
Lyapunov exponents using the local Jacobian matrix and the Oseledec matrix. The eigenvalues
of the Oseledec matrix tell us how rapidly perturbations to the orbit at point x in phase space
grow or shrink in P time steps away from the time of the perturbation. These λi(x, P ) are called
the local Lyapunov exponents or the finite time Lyapunov exponents [9, 11].

The Lyapunov exponents provide a coordinate-independent measure of the asymptotic local
stability of EEG data. The trajectories of an N dimensional state space have N Lyapunov
exponents. These N Lyapunov exponents are often called the Lyapunov spectrum [9]. The
qualitative features of the asymptotic local stability properties can be summarized by the sign
of each Lyapunov exponent. A positive Lyapunov exponent indicates an unstable direction;
a negative exponent indicates a stable direction. Thus (+,−,−) implies a trajectory in three-
dimensional state space with one positive Lyapunov exponent. The Lyapunov numbers Λi are
defined as

Λi ≡ eλi . (2)

The Lyapunov spectrum and the metric entropy are related by Pesin’s identity [14]

hµ =
r∑

i=1

positive λi, (3)
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where λi represents the Lyapunov exponents and r is the maximal number of positive Lyapunov
exponents.

2.2. Lyapunov dimension. The Lyapunov dimension is a characteristics related to the
spectrum of Lyapunov exponents and predictability of the EEG signal. The hypersurface of

dimension m of the EEG signal expands at a rate governed by the sum
m∑

i=1
λi, where m is the

embedding dimension. Kaplan and Yorke [12] have suggested the following definition of the
Lyapunov dimension

dL = k +

k∑
i=1

λi

|λk+1| , (4)

where k is the largest value such that
k∑

i=1
λi > 0, and the second term characterizes the fractional

part of the dimension. We may anticipate that for an epileptic attractor, the Lyapunov dimension
is equal to the information dimension.

2.3. Geometric models and fiber bundles. This approach involves a geometric descrip-
tion of Lyapunov exponents for correcting the nonlinear process that provides adaptive dynamic
control.

We separate the Lyapunov exponents into tangent space (fiber bundle) and its functional
space. Control involves signal processing, calculation of an information characteristic, measure-
ment of Lyapunov exponents, and feed-back to the system. With more information, we can
reduce uncertainty by a certain degree.

We have demonstrated the computational aspects of the proposed geometric approach on
the base of different mathematical models in the presence of noise of various origins [10]. We
review the EEG signal, and outline a typical application of the geometrical representation:
three dimensional reconstruction of Lyapunov exponents and correlation dimension obtained
from EEG data.

The novelty in this report is in the representation of the dynamical instability by a Rie-
mannian theory in a way that permits practical applications. We discuss an application of
this approach to the development of novel devices for seizure control through electromagnetic
feed-back.

2.4. Geometric description of dynamical instability. The actual interest of the Rie-
mannian formulation of dynamics stems from the possibility of studying the instability of the
brain dynamics through the instability of geodesics of a suitable manifold, a circumstance that
has several advantages.

First of all, a powerful mathematical tool exists to investigate the stability or instability of
a geodesic flow: the Jacobi—Levi-Civita (JLC) equation for geodesic spread.

The JLC equation describes covariantly how nearby geodesics locally scatter and is a familiar
object in both Riemannian geometry and theoretical physics.

Moreover, the JLC equation relates the stability or instability of a geodesic flow with cur-
vature properties of the ambient manifold, thus opening a wide and largely unexplored field
for investigation, as far as physical systems are concerned, of the connections among geometry,
topology, and geodesic instability.

Geometrization of the brain dynamics includes the following stages: 1) reconstruction of
equations of the epileptic brain from experimental data; 2) realization in local coordinates of
a one-parameter group of diffeomorphisms of a manifold M ; 3) estimation of the largest Lya-
punov exponent; 4) geometrization of the dynamics; 5) geometric description of the dynamical
instability; 6) applying Jacobi–Levi-Civita equation for geodesic spread; 7) analytical description
of the largest Lyapunov exponent.
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2.5. An analytic formula for the largest Lyapunov exponent. By transforming the
Jacobi–Levi-Civita equation from geodesic spread into a scalar equation for ψ variable, the
original complexity of the JLC equation has been considerably reduced: from a tensor equation
we have obtained an effective scalar equation formally representing a stochastic oscillator [13].

Our Lyapunov exponent is defined as

λ = lim
t−→∞

1
2t

ln
ψ2(t) + ψ̇2(0)
ψ2(0) + ψ̇2(0)

, (5)

where ψ(t) is solution of the equation

d2ψ

ds2
+ Ω(t)ψ = 0, (6)

Ω(t) is a Gaussian stochastic process;

Ω(t) = 〈kR〉µ + µ
1√
N

〈δ2KR〉
1
2
µη(t), (7)

if the Eisenhart metric is used.
The instability growth rate of ψ measures the instability growth rate of ‖J‖2 (geodetic sepa-

ration field) and thus provides the dynamical instability exponent in our Riemannian framework.
Equation (6) is a scalar equation that, independently of the knowledge of the dynamics,

provides a measure of the average degree of instability of the dynamics itself through the behavior
of ψ(s). The peculiar properties of a given Hamiltonian system enter (6) through the global
geometric properties 〈kR〉µ and 〈δ2KR〉µ of the ambient Riemannian manifold whose geodesics
are natural motions and are sufficient to determine the average degree of chaoticity of the
dynamics.

3 Experimental results

In this section, we examine EEGs from an experimental murine model of human epilepsy that
has seizures which like humans, are spontaneous, intermittent, and sometimes lethal. This
mouse model was the product of genetic engineering in which the H218/AGR16/Edg-5/LP(B2)
sphingosine 1-phosphate receptor gene has been disrupted. Beginning on postnatal day 19
through postnatal day 22, H218 deficient mice exhibit generalized seizures which can be easily
identified in intracranial EEG recordings [8].

In brief, this experimental model was produced by knocking out the entire protein coding
region of the single copy mouse H218 gene through homologous recombination [8]. Southern
blot analysis with 3’ and 5’ probes, as well as PCR analysis confirmed the appropriate location
of the mutation in both ES cells and mice following germ line transmission. The appearance
and behavior of the newborn H218 gene deficient mice were indistinguishable from that of their
control littermates. Postnatal days 19 through 22 H218 deficient mice (n = 8) were continuously
monitored with video-EEG for electrographic and behavioral seizures. Microelectrodes were
placed in both frontal and hippocampal regions, bilaterally (Fig. 1).

Signals were sampled at 200 Hz, using an analog to digital (A/D) converter with 12 bits
quantitation, and amplifiers with input range of −2.5 to +2.5 mV and frequency range of 0.05 Hz
to 70 Hz. These recordings were obtained using a BSMI/Nicolet (Madison, WI) 32 channel
video-EEG instrument. Seizures consisted of wild-running fits and/or clonic-tonic movements of
the arms and legs. Concomitant EEG changes consisted of continuous bilateral spike and wave
discharges.
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EEG seizures were the most robust over the frontal electrodes. Following each seizure, EEG
background activity was slowed and suppressed by 50 % in comparison to the preictal EEG
activity. At a cellular level, whole-cell patch clamp recordings revealed that the loss of H218
leads to a large increase in the excitability of neocortical pyramidal neurons [8]. The loss of
H218 did not affect intrinsic membrane properties. However, the H218 neurons displayed sig-
nificant increases in both the frequency and amplitude of spontaneous excitatory postsynaptic
currents (sEPSCs). Under current clamp, spontaneous, paroxysmal depolarizing shift accompa-
nied by bursts of action potentials were observed in 10 out of 14 H218 cells in physiological bath
solution [8].
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Figure 1. Schematic diagram of the depth electrode placement. Ictal discharge begins as spike and wave
discharges in bilateral frontal and hippocampal electrodes.

Our experimental studies utilized the T-index of a homozygous and a wild mouse from an
electrode site overlying the seizure focus (Figs. 2–6).
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Figure 2. T-Index profiles in H218+/+ littermate. An example of continuous 3 hr trace obtained from
a 21 day old littermate control illustrating a persistently higher average T-index. Note that the average
T-index does not decline below the critical value of 2.045 (represented by the discontinuous horizontal
line). No seizures occurred in littermates. T-index plot in postnatal day 21 control mouse.

Time-resolved analysis of intracranial electroencephalogram (EEG) signals recorded in
a transgenic epileptic mouse indicates marked changes in spatiotemporal dynamics, often begin-
ning several minutes prior to seizure onset. The spatiotemporal dynamics of this preictal (before
seizure) transition differ markedly from that of the interictal (between seizure) period. If inter-
preted as a loss of complexity in the brain electrical activity of the mouse, these changes could
reflect continuous increase synchronization between pathological discharging neurons and alow
one to study seizures-generating mechanisms in a seizure-prone brain. Time-resolved analysis
of neuronal activity recorded in a seizure prone mouse indicates marked changes in nonlinear
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dynamical characteristics for up to several minutes prior to seizure onset in comparison to the
interictal seizure state.
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Figure 3. T-Index profiles in H218 deficient mice. Five seizures (SZ 1-5) are depicted during 3 hrs of
continuous EEG recording in a 21 day old H218 deficient mouse. Lines indicate the time of the EEG
seizure onset. The gray area represents the pre-seizure time period. Note that the average T-index falls
below the threshold value of 2.045 several min prior to an EEG seizure.
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Figure 4. Local prediction T-index based on reconstructed three-dimensional model. The top two
plots illustrate the T-index created from the H218 deficient mice and the corresponding parameter a3 as
function of time; the bottom two plots demonstrate the polynomial approximation of the parameter a3

and estimated and predicted (criss-cross) T-index.

4 Conclusion

We have proposed a geometric approach to studying of the physiological disturbances that occur
in human epilepsy. Under reasonable hypotheses, which obviously restrict the validity of the
geometric approach, this paper provides the possibility for numerical computation of the state
changes in the EEG signals using the largest Lyapunov exponent and the combination of the
curvature of the underlying manifold and the geodesics. These geodesics flows may have very
specific hidden symmetries, mathematically defined through Killing tensor field.

The development of an appropriate model of the epileptic brain will provide opportunities to
investigate the effects of various approaches to a dynamical control. This would be an essential
first step in the development of novel treatments, based upon the geometric theory of nonlinear
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dynamics. Clearly, further work is needed to carefully probe experimentally observed dynamics
of the epileptic brain, and to clarify the bifurcation and self-organization structures that display
complex probability distribution functions.
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Figure 5. The top two plots illustrate the T-index created from the H218+/+ littermate deficient
mice and the corresponding phase space; the bottom two plots demonstrate the histogram obtained from
T-index and the and ln f .
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Figure 6. The top two plots illustrate the T-index created from the H218 deficient mice and the
corresponding phase space; the bottom two plots demonstrate the histogram obtained from T-index and
the and ln f .

We estimate the T -index which reflects the complexity of the motion of the brain conside-
red. Our results suggest that neuronal oscillatory behavior in the H218 deficient brain reflects
neuronal network synchrony between frontal and hippocampal brain sites. Importantly, the
observed oscillatory neuronal behavior occurs in anticipation of an impending seizure. The
main factors that contribute to the occurrence of such synchronous oscillations in neuronal net-
works may include the intrinsic properties of the neurons, the structure of the interconnectivity
between the networks elements, the synaptic processes that subserve specific inputs and feed-
back/feedforward loops, and the modulating influence from general or local neurotransmitters.

The hybrid time series analysis of ongoing EEG signals may be used to extract features
of the signal which are characteristic of the preictal (before seizures) transition. It could be
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demonstrated that the synchronization phenomena of the preictal state differ clearly from that
found during seizures-free interval under various conditions. Both synchronization duration
and strength are of a sufficient magnitude to open a time frame that provides possibilities for
pharmacological or electro-physiologic interventions in the pre-ictal period. It remains to be
established whether different methods of nonlinear time series analysis can provide information
that will lead to understanding of the mechanisms underlying epileptogenesis.
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