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If a Hamiltonian H has an unbroken PT symmetry, then it also possesses a hidden symmetry
represented by the linear operator C. The operator C commutes with both H and PT . The
inner product with respect to CPT is associated with a positive norm and the quantum
theory built on the associated Hilbert space is unitary. In this paper it is shown how to
construct the operator C for the non-Hermitian PT -symmetric Hamiltonian H = 1

2p2 +
1
2x2 + iεx3 using perturbative techniques. It is also shown how to construct the operator C
for H = 1

2p2 + 1
2x2 − εx4 using nonperturbative methods [1].

1 Introduction and Background

It was observed in 1998 [2] that with properly defined boundary conditions the Sturm–Liouville
differential equation eigenvalue problem associated with the non-Hermitian PT -symmetric Ha-
miltonian

H = p2 + x2(ix)ν (ν > 0) (1)

exhibits a spectrum that is real and positive. By PT symmetry we mean the following: The
linear parity operator P performs spatial reflection and thus reverses the sign of the momen-
tum and position operators: PpP−1 = −p and PxP−1 = −x. The antilinear time-reversal
operator T reverses the sign of the momentum operator and performs complex conjugation:
T pT −1 = −p, T xT −1 = x, and T iT −1 = −i. The non-Hermitian Hamiltonian H in (1) is not
symmetric under P or T separately, but it is invariant under their combined operation; such
Hamiltonians are said to possess space-time reflection symmetry (PT symmetry). We say that
the PT symmetry of a Hamiltonian H is not spontaneously broken if the eigenfunctions of H
are simultaneously eigenfunctions of the PT operator.

In a recent letter it was shown that any Hamiltonian that possesses an unbroken PT symmetry
also has a hidden symmetry [3]. This new symmetry is represented by the linear operator C,
which commutes with both the Hamiltonian H and the PT operator. In terms of C one can
construct an inner product whose associated norm is positive definite. Observables exhibit
CPT symmetry and the dynamics is governed by unitary time evolution. Thus, PT -symmetric
Hamiltonians give rise to new classes of fully consistent complex quantum theories.

The purpose of the present paper is to present an explicit calculation of C for two nontrivial
Hamiltonians. First, we consider the case of the PT -symmetric Hamiltonian

H =
1
2
p2 +

1
2
x2 + iεx3, (2)

for which we give a perturbative calculation of the operator C correct to third order in powers
of ε. Second, we calculate C for the Hamiltonian

H =
1
2
p2 +

1
2
x2 − εx4, (3)
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for which ordinary perturbative methods are ineffective and nonperturbative methods must be
used. The organization of this paper is straightforward. In Section 2 we review the formal
construction, first presented in Ref. [3], of the C operator. In Section 3 we calculate C for the
Hamiltonian in (2) and in Section 4 we calculate C for the Hamiltonian in (3).

2 Formal derivation of the C operator

In this section we present a formal discussion of PT -symmetric Hamiltonians and we show how
to construct the C operator. In general, for any PT -symmetric Hamiltonian H we must begin
by solving the Sturm–Liouville differential equation eigenvalue problem associated with H:

Hφn(x) = Enφn(x) (n = 0, 1, 2, 3, . . .). (4)

For Hamiltonians like those in (1)–(3) the differential equation (4) must be imposed on an
infinite contour in the complex-x plane. For large |x| the contour lies in wedges that are placed
symmetrically with respect to the imaginary-x axis. These wedges are described in Ref. [2]. The
boundary conditions on the eigenfunctions are that φ(x) → 0 exponentially rapidly as |x| → ∞
on the contour. For H in (2) the contour may be taken to be the real-x axis, but for H in (3)
the contour lies in the two wedges −π/3 < arg x < 0 and −π < arg x < −2π/3.

For all n, the eigenfunctions φn(x) are simultaneously eigenstates of the PT operator. We
can choose the phase of φn(x) such that the eigenvalue of (PT ) is unity:

PT φn(x) = φn(x). (5)

Next, we observe that there is an inner product, called the PT inner product, with respect
to which the eigenfunctions φn(x) for two different values of n are orthogonal. For the two
functions f(x) and g(x) the PT inner product (f, g) is defined by

(f, g) ≡
∫

C
dx [PT f(x)] g(x), (6)

where PT f(x) = [f(−x∗)]∗ and the contour C lies in the wedges described above. For this inner
product the associated norm (f, f) is independent of the overall phase of f(x) and is conserved
in time.

We then normalize the eigenfunctions so that |(φn, φn)| = 1 and we discover the apparent
problem with using a non-Hermitian Hamiltonian. While the eigenfunctions are orthogonal, the
PT norm is not positive definite:

(φm, φn) = (−1)nδm,n (m, n = 0, 1, 2, 3, . . .). (7)

Despite the fact that this norm is not positive definite, the eigenfunctions are complete. For
real x and y the statement of completeness in coordinate space is1∑

n

(−1)nφn(x)φn(y) = δ(x − y). (8)

This is a nontrivial result that has been verified numerically to extremely high accuracy [4].
1It is important to remark here that the argument of the Dirac delta function in (8) must be real because the

delta function is only defined for real argument. This may seem to be in conflict with the earlier remark in this
section that the Schrödinger equation (4) must be solved along a contour that lies in wedges in the complex-x
plane. To resolve this apparent conflict we specify the contour as follows. We demand that the contour lie on
the real axis until it passes the points x and y. Only then may it veer off into the complex-x plane and enter the
wedges. This choice of contour is allowed because the wedge conditions are asymptotic conditions. The positions
of the wedges are determined by the boundary conditions.
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We construct the linear operator C that expresses the hidden symmetry of the Hamiltonian H.
The position-space representation of C is

C(x, y) =
∑

n

φn(x)φn(y). (9)

The properties of the operator C are easy to verify using (7). First, the square of C is unity:∫
dy C(x, y)C(y, z) = δ(x − z). (10)

Second, the eigenfunctions φn(x) of the Hamiltonian H are also eigenfunctions of C and the
corresponding eigenvalues are (−1)n:∫

dy C(x, y)φn(y) = (−1)nφn(x). (11)

Third, the operator C commutes with both the Hamiltonian H and the operator PT . Note that
while the operators P and C are unequal, both P and C are square roots of the unity operator
δ(x − y). Last, the operators P and C do not commute. Indeed, CP = (PC)∗.

The operator C does not exist as a distinct entity in conventional Hermitian quantum me-
chanics. Indeed, we will see that as the parameter ε in (2) and (3) tends to zero the operator C
becomes identical to P.

We can now define an inner product 〈f |g〉 whose associated norm is positive:

〈f |g〉 ≡
∫

dx [CPT f(x)]g(x). (12)

The CPT norm associated with this inner product is positive because C contributes −1 when it
acts on states with negative PT norm.

3 Perturbative calculation of C in a cubic theory

In this section we use perturbative methods to calculate the operator C(x, y) for the Hamiltonian
H = 1

2p2 + 1
2x2 + iεx3. We perform the calculations to third order in perturbation theory. We

begin by solving the Schrödinger equation

−1
2
φ′′

n(x) +
1
2
x2φn(x) + iεx3φn(x) = Enφn(x) (13)

as a series in powers of ε.
The perturbative solution to this equation has the form

φn(x) =
inan

π1/42n/2
√

n!
e−

1
2
x2 [

Hn(x) − iPn(x)ε − Qn(x)ε2 + iRn(x)ε3
]
, (14)

where Hn(x) is the nth Hermite polynomial and Pn(x), Qn(x), and Rn(x) are polynomials in x
of degree n + 3, n + 6, and n + 9, respectively. These polynomials can be expressed as linear
combinations of Hermite polynomials [1].

The energy En to order ε3 is

En = n +
1
2

+
1
8

(
30n2 + 30n + 11

)
ε2 + O

(
ε4

)
. (15)

The expression for φn(x) must be PT -normalized according to (7) so that its square integral is
(−1)n:∫ ∞

−∞
dx [φn(x)]2 = (−1)n + O

(
ε4

)
. (16)
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This determines the value of an in (14):

an = 1 +
1

144
(2n + 1)

(
82n2 + 82n + 87

)
ε2 + O

(
ε4

)
. (17)

We calculate the operator C(x, y) by substituting the wave functions φn(x) in (14) into (9).
We then use the completeness relation for Hermite polynomials to evaluate the sum.

To third order in ε the result is

C(x, y) =
{

1 − iε

(
4
3

∂3

∂x3
+ 2xy

∂

∂x

)
− ε2

[
8
9

∂6

∂x6
+

8
3
xy

∂4

∂x4
+

(
2x2y2 − 12

) ∂2

∂x2

]

+ iε3
[
32
81

∂9

∂x9
+

16
9

xy
∂7

∂x7
+

(
8
3
x2y2 − 176

5

)
∂5

∂x5

+
(

4
3
x3y3 − 48xy

)
∂3

∂x3
+

(
−8x2y2 + 64

) ∂

∂x

]
+ O

(
ε4

)}
δ(x + y). (18)

Hence, the coordinate-space representation of the operator C(x, y) is expressed as a derivative of
a Dirac delta function. From this expression for C(x, y) we can verify the following properties:
First, to order ε3 the operator C(x, y) satisfies (10). That is,

∫ ∞

−∞
dy C(x, y)C(y, z) = δ(x − z) + O

(
ε4

)
. (19)

Second, to order ε3 the operator C(x, y) satisfies (11); the wave functions φn(x) are eigenstates
of C(x, y) with eigenvalue (−1)n. That is,

∫ ∞

−∞
dy C(x, y)φn(y) = (−1)nφn(x) + O

(
ε4

)
. (20)

Third, in the limit as ε → 0, the operator C(x, y) becomes the coordinate-space representation
of the parity operator P(x, y) = δ(x + y).

There is a somewhat simpler way to express the operator C(x, y). The derivative operator
in (18) that is acting on δ(x + y) can be exponentiated so that to order ε4 (and not just ε3) we
have

C(x, y) = e−iεA−iε3Bδ(x + y) + O
(
ε5

)
, (21)

where the derivative operators A and B are given by

A =
4
3

∂3

∂x3
− 2x

∂

∂x
x,

B =
128
15

∂5

∂x5
− 40

3
x

∂3

∂x3
x + 8x2 ∂

∂x
x2 − 32

∂

∂x
. (22)

4 Nonperturbative calculation of C in a quartic theory

In this section we explain briefly the nonperturbative methods that must be used to calculate
the operator C(x, y) for the Hamiltonian H = 1

2p2 + 1
2x2 − εx4. We follow the approach taken in

Ref. [5], in which nonperturbative methods were used to calculate the one-point Green’s function
for this Hamiltonian.
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4.1 Failure of perturbation theory

We begin by explaining why perturbation theory fails to produce the operator C(x, y). Following
the approach taken in Section 3, we expand the solution to the Schrödinger equation

−1
2
φ′′

n(x) +
1
2
x2φn(x) − εx4φn(x) = Enφn(x) (23)

as a series in powers of ε:

φn(x) =
inan

π1/42n/2
√

n!
e−

1
2
x2

[Hn(x) + Pn(x)ε] + O
(
ε2

)
, (24)

where Hn(x) is the nth Hermite polynomial and Pn(x) is a polynomial in x of degree n+4. The
polynomial Pn(x) is a linear combination of Hermite polynomials [1].

The energy En to order ε is

En = n +
1
2
− 3

4
(
2n2 + 2n + 1

)
ε + O

(
ε2

)
. (25)

We must also PT normalize the expression for φn(x) according to (7) so that its square
integral is (−1)n:∫ ∞

−∞
dx [φn(x)]2 = (−1)n + O

(
ε2

)
. (26)

This determines the value of an in (24). The result is very simple; to order ε we have

an = 1 + O
(
ε2

)
. (27)

Finally, we substitute φn(x) in (24) into (9). However, we obtain the trivial result that only
the leading term (zeroth-order in powers of ε) survives. More generally, we can show by a parity
argument that the coefficients of all higher powers of ε vanish. Thus, we get the (wrong) result
that

C(x, y) = δ(x + y) (WRONG!). (28)

We know that this result is wrong because the operator C(x, y) is complex and the result in (28)
is real. An alternative way to see this is to note (28) implies that C(x, y) and P(x, y) coincide;
but in this PT -symmetric theory, C(x, y) and P(x, y) are distinct operators. We will see that
the difference between C(x, y) and P(x, y) is a nonperturbative term of order e−1/(3ε), which is
smaller than any integer power of ε.

4.2 Nonperturbative analysis

We will now show how to perform a nonperturbative analysis of the Schrödinger equation (23).
We decompose the eigenfunction φn(x) into its perturbative part on the right side of (24) and
a nonperturbative part:

φn(x) = φpert
n (x) + φnonpert

n (x). (29)

The nonperturbative part of φn(x) is exponentially small compared with the perturbative part,
but these two contributions can be easily distinguished because for real argument x, one is real
while the other is imaginary.
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Following the WKB analysis in Ref. [5], we break the real-x axis into three regions: In region I,
where |x| � ε−1/4, we have

φpert
n (x) ∼ in

π1/4
√

n!
Dn

(
x
√

2
)
,

φnonpert
n (x) ∼ ibnCn

(
x
√

2
)
, (30)

where the coefficient of Dn is taken from (24) and the coefficient ibn of Cn will be determined by
asymptotic matching. Note that for nonnegative integer index the parabolic cylinder function Dn

is expressed in terms of a Hermite polynomial Hn as

Dn(x
√

2) = 2−n/2e−
1
2
x2

Hn(x). (31)

Also, for nonnegative integer index the functions Dn and Cn are a pair of linearly independent
solutions to the parabolic cylinder equation. They can be expressed in terms of parabolic cylinder
functions as follows:

Dn(z) ≡ n!√
2π

[inD−n−1(iz) + (−i)nD−n−1(−iz)] ,

Cn(z) ≡ i√
2π

[inD−n−1(iz) − (−i)nD−n−1(−iz)] . (32)

In region II, where 1 � |x| � ε−1/2, we can obtain the eigenfunction using WKB theory. We
write the Schrödinger equation (23) in the form φ′′

n(x) = ωn(x)φn(x) where, to leading order
in ε, we have ωn(x) = −2εx4 + x2 − 2n − 1. Then, for positive x the physical-optics WKB
approximation reads

φpert
n (x) ∼ fn[ωn(x)]−1/4 exp

[
−

∫ x

x1

ds
√

ωn(s)
]

,

φnonpert
n (x) ∼ gn[ωn(x)]−1/4 exp

[
+

∫ x

x1

ds
√

ωn(s)
]

, (33)

where the constants fn and gn will be determined by asymptotic matching. The lower endpoint
of integration, x1 =

√
2n + 1, is the approximate location of the inner turning point.

In region III x is near the outer turning points at ±1/
√

2ε. For positive x we define the
variable r by x = x2

(
1 − 21/3ε2/3r

)
, where x2 = 1/

√
2ε. The condition that x is near x2 is that

r � ε−2/3. In this region the Schrödinger equation becomes an Airy equation in the variable r:
φ′′

n(r) = rφn(r). The solution in this region reads

φpert
n (r) ∼ hnBi(r),

φnonpert
n (r) ∼ −ihnAi(r), (34)

where Ai(r) and Bi(r) are the exponentially decaying and growing Airy functions for large
positive r. The fact that the same coefficient hn multiplies both Bi and Ai is a nontrivial result
that is established in Ref. [5].

By asymptotically matching the solutions in regions I and II and the solutions in regions II
and III we obtain the formula for the coefficient of the nonperturbative part of the solution
in (30):

bn = − inπ1/4

√
2 n!

(
4
ε

)n+ 1
2

e−
1
3ε . (35)
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Finally, using the wave function in region I we can construct the operator C(x, y) according
to (9):

C(x, y) =
∞∑

n=0

[
φpert

n (x)φpert
n (y) + φpert

n (x)φnonpert
n (y)

+ φnonpert
n (x)φpert

n (y) + φnonpert
n (x)φnonpert

n (y)
]
. (36)

The first sum in this equation gives δ(x + y) to all orders in powers of ε as explained above in
Subsection 4.1. The last sum is negligible compared with the second and third sums. We thus
obtain

C(x, y) = δ(x + y)

− ie−
1
3ε

√
2
ε

∞∑
n=0

1
n!

(
−4

ε

)n [
Dn(x

√
2)Cn(y

√
2) + Cn(x

√
2)Dn(y

√
2)

]
, (37)

where Cn and Dn are defined in (32). Observe that the correction to the delta function (that is,
the difference between the P operator and the C operator) is nonperturbative; it is exponentially
small and imaginary.

The summation in (37) can be converted to a double integral:

C(x, y) = δ(x + y) + i

√
2

π3ε
e−

1
3ε e

1
2
(x2+y2)

{
∂

∂x

∫ π

0
dθ

∫ 1

0

ds√
1 + s2

× exp




(
2
√

2s/ε cos θ − ix − isy
)2

1 + s2


 + (x ↔ y)

}
. (38)

This is the leading-order nonperturbative approximation to the coordinate-space representation
of the operator C.
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