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The paper discusses the application of MathLie in connection with Lie group analysis. The
examined example is the (2 + 1)-dimensional case of the Doebner–Goldin equations after
Madelung representation. The related Lie algebras are calculated and classified. Further-
more we discuss the determination of an optimal system for the 7-dimensional case of one
Lie algebra.

1 Introduction

The application of Lie’s theory to examine systems of partial differential equations is one of the
most efficient methods to calculate solutions for equations of motions. Furthermore Lie’s theory
allows the classification of solutions and related algebras. One can use Lie’s transformation
theory as a microscope to get information about the properties of a physical model [1, 2]. Lie’s
method is discussed in literature in great detail [3–6]. With the algorithms at hand one can gener-
ate computer programs such as MathLie to automatically carry out the calculations. Today there
are a large number of symbolic computing programs for the algebraic manipulation of equations.

In this discussion we show investigations to get information about the structure of solutions
of the Doebner–Goldin–Madelung equations. The symmetry investigations of these equations
are carried out by using the Mathematica program MathLie. Section 3 is concerned with the
algebra investigation of a 7-dimensional algebra using the Mathematica program MathLieAlg by
R. Schmid [7]. Section 4 deals with an algorithm of calculating optimal systems. The example
discussed in Section 4 is a 7-dimensional algebra generated by one of the Doebner–Goldin–
Madelung equation.

2 Derivation of the Doebner–Goldin equations

The investigation of Borel quantization for S1 leads to a non-linear Schrödinger equation of the
form (here with m = 1, � = 1):

i∂tψ = −1
2
∆ψ + V (�x, t)ψ +

i
2
KR2(ψ)ψ +

5∑
j=1

DjRj(ψ)ψ, (1)

derived by Dobrev, Doebner and Twarock [8] and nowadays called Doebner–Goldin equations.
Here, the Rj(ψ) with j ∈ {1, . . . , 5} are real valued functionals of the real valued density � =

� = ψψ and the real valued current �j = �j = i�
2m

(
ψ∇ψ − ψ∇ψ)

and can be found in [8, 9].
In the following we consider the (2+1)-dimensional case of equation (1) without potential V .

Applying the Madelung transformation

ψ →
√
�(�x, t) exp

(
iS(�x, t)

)
, ψ →

√
�(�x, t) exp

( − iS(�x, t)
)
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to equation (1) and dividing the resulting equations into real and imaginary parts we find the
following system:

�t + Sx�x + Sy�y + �Sxx + �Syy − δ�xx − δ�yy = 0, (2)

(1 + 8D5)
(
�2

x + �2
y

)
+ 4�2

(
2St + S2

x + 2D3S
2
x + (1 + 2D3)S2

y + 2D1Sxx + 2D1Syy

)
(3)

+ 2�(4D1Sx�x + 4D4Sx�x + 4(D1 +D4)Sy�y − �xx + 4D2�xx + (−1 + 4D2)�yy) = 0,

where m = 1 and � = 1. Here, D1, D2, D3, D4, and δ are real valued parameters. By permu-
tating these parameters we receive 63 different model equations (see table in [9]) of nonlinear
Schrödinger type. This set of equations is called the set of Doebner–Goldin–Madelung equations.
The whole set of equations are examined with the Mathematica program MathLie.

3 Symmetry analysis of the (2 + 1)-dimensional
Doebner–Goldin–Madelung equations

In order to find the symmetry group of equations (2), (3), we apply the algorithms described in
text books such as [3, 1]. We look for an algebra of vector fields of the form

V = ξ[1]∂x + ξ[2]∂t + φ[1]∂� + φ[2]∂S ,

where the infinitesimals ξ[1], ξ[2] and φ[1], φ[2] depend on x, t, �, and S in general.
These coefficients are determined from the requirement that the second prolongation of V

should annihilate the equation on the solution set of the equation. This was done by using the
Mathematica program MathLie [3] for all 63 model equations of the Doebner–Goldin–Madelung
equations.

The next step of our discussion is related to the investigation of the 7-dimensional algebra of
the equation with the parameters D3, D5 (see [9]). We use a Mathematica program MathLieAlg
by R. Schmid [7]. The generators of this equation are:

V [1] = ∂t, V [2] = �∂�, V [3] = −4t∂t − 2x∂x − 2y∂y,

V [4] = ∂x, V [5] = ∂S , V [6] = −y∂x + x∂y, V [7] = ∂y. (4)

The only non-zero commutators of the vector fields are following:

[V [1], V [3]] = −4V [1], [V [3], V [4]] = 2V [4], [V [3], V [7]] = 2V [7],
[V [4], V [6]] = V [7], [V [6], V [7]] = V [4].

Nontrivial algebra elements are {V [1], V [2], V [3], V [5], V [6]}. Algebras can be generated by
the following sets:

{V [1], V [2], V [3], V [4], V [5], V [6]}, {V [1], V [2], V [3], V [5], V [6], V [7]},
{V [1], V [2], V [3], V [4], V [5], V [6], V [7]}.

The Cartan metric of this algebra reads:


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 24 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −2 0
0 0 0 0 0 0 0



.

The algebraic properties are following: not semisimple, solvable, not nilpotent.
From this algebra the subalgebras listed in Table 1 can be derived:
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Table 1. Table of subalgebras1.

Dimension
Number

of subalgebras
Subalgebra elements

0 1 {}
1 7 {V [1]}, {V [2]}, {V [3]}, {V [4]}, {V [5]}, {V [6]}, {V [7]}
2 19 {V [1], V [2]}, {V [1], V [3]}, {V [1], V [4]}, {V [1], V [5]}, {V [1], V [6]},

{V [1], V [7]}, {V [2], V [3]}, {V [2], V [4]}, {V [2], V [5]}, {V [2], V [6]},
{V [2], V [7]}, {V [3], V [4]}, {V [3], V [5]}, {V [3], V [6]}, {V [3], V [7]},
{V [4], V [5]}, {V [4], V [7]}, {V [5], V [6]}, {V [5], V [7]}

3 27 {V [1], V [2], V [3]}, {V [1], V [2], V [4]}, {V [1], V [2], V [5]}, {V [1], V [2], V [6]},
{V [1], V [2], V [7]}, {V [1], V [3], V [4]}, {V [1], V [3], V [5]}, {V [1], V [3], V [6]},
{V [1], V [3], V [7]}, {V [1], V [4], V [5]}, {V [1], V [4], V [7]}, {V [1], V [5], V [6]},
{V [1], V [5], V [7]}, {V [2], V [3], V [4]}, {V [2], V [3], V [5]}, {V [2], V [3], V [6]},
{V [2], V [3], V [7]}, {V [2], V [4], V [5]}, {V [2], V [4], V [7]}, {V [2], V [5], V [6]},
{V [2], V [5], V [7]}, {V [3], V [4], V [5]}, {V [3], V [4], V [7]}, {V [3], V [5], V [6]},
{V [3], V [5], V [7]}, {V [4], V [5], V [7]}, {V [4], V [6], V [7]}

4 23 {V [1], V [2], V [3], V [4]}, {V [1], V [2], V [3], V [5]}, {V [1], V [2], V [3], V [6]},
{V [1], V [2], V [3], V [7]}, {V [1], V [2], V [4], V [5]}, {V [1], V [2], V [4], V [7]},
{V [1], V [2], V [5], V [6]}, {V [1], V [2], V [5], V [7]}, {V [1], V [3], V [4], V [5]},
{V [1], V [3], V [4], V [7]}, {V [1], V [3], V [5], V [6]}, {V [1], V [3], V [5], V [7]},
{V [1], V [4], V [5], V [7]}, {V [1], V [4], V [6], V [7]}, {V [2], V [3], V [4], V [5]},
{V [2], V [3], V [4], V [7]}, {V [2], V [3], V [5], V [6]}, {V [2], V [3], V [5], V [7]},
{V [2], V [4], V [5], V [7]}, {V [2], V [4], V [6], V [7]}, {V [3], V [4], V [5], V [7]},
{V [3], V [4], V [6], V [7]}, {V [4], V [5], V [6], V [7]}

5 13 {V [1], V [2], V [3], V [4], V [5]}, {V [1], V [2], V [3], V [4], V [7]}, {V [1], V [2], V [3], V [5], V [6]},
{V [1], V [2], V [3], V [5], V [7]}, {V [1], V [2], V [4], V [5], V [7]}, {V [1], V [2], V [4], V [6], V [7]},
{V [1], V [2], V [3], V [4], V [5]}, {V [1], V [3], V [4], V [5], V [7]}, {V [1], V [3], V [4], V [6], V [7]},
{V [1], V [4], V [5], V [6], V [7]}, {V [2], V [3], V [4], V [5], V [7]}, {V [2], V [3], V [4], V [6], V [7]},
{V [2], V [4], V [5], V [6], V [7]}, {V [3], V [4], V [5], V [6], V [7]}

6 5 {V [1], V [2], V [3], V [4], V [5], V [7]}, {V [1], V [2], V [3], V [4], V [6], V [7]},
{V [1], V [2], V [4], V [5], V [6], V [7]}, {V [1], V [3], V [4], V [5], V [6], V [7]},
{V [2], V [3], V [4], V [5], V [6], V [7]}

7 1 {V [1], V [2], V [3], V [4], V [5], V [6], V [7]}

Examining the subalgebras we can find the ideals listed in [9]. The normalizer of all ideals is
the algebra {V [1], V [2], V [3], V [4], V [5], V [6], V 7]} and the radical reads {V [1], V [2], V [3], V [4],
V [5], V [6], V 7]}. For the center we find {V [2], V [5]}. The adjoint representation of our 7-
dimensional algebra can be found in [9].

4 The optimal system of the seven-dimensional algebra

Let us first consider the general system of differential equations

F
(
x, u, u(n)

)
= 0 (5)

and the related symmetry group G. For every s-parametric subgroup Hs one can calculate
similarity solutions under the assumption2, that s < min(r, n′), where n′ is the number of
independent variables and r is the order of the system of differential equations [4]. In this set
of similarity solutions there are such solutions, which can be calculated by a transformation
of the symmetry group from other similarity solutions. Our aim is to derive a minimal set of
similarity solutions from which one can gain all the other solutions by a transformation. Such
a list is called optimal system of similarity solutions with elements which are essentially different
types of similarity solutions. The application of the conjugation (see e.g. [12]) and a theorem

1{} is empty set.
2Following [12] the number of parameters s of a subgroup H of a symmetry group G will be written under the

symbol of the subgroup.
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by Olver [6] allows us to transform the problem of classifying solutions to that of classifying
subgroups. The adjoint representation maps this problem to the classification of subalgebras
with respect to inner automorphisms. The result is the optimal system of subalgebras. More
details can be found in [4, 6].

The literature presents several methods of classifying subalgebras. A detailed discussion of
the procedures are given in [10, 4, 5, 11]. A common property of these methods is that they all
start with algebras of very low dimension.

Due to Ovsyannikov [13–15] we organize our calculations by the following definition and
theorem.

Definition 1 ([15]). An optimal system ΘL is said to be normalized if NorK ∈ ΘL whenever
a subalgebra K is in ΘL.

The existence of such optimal system follows from

Theorem 1 ([15]). For any finite-dimensional Lie algebra there exists a normalized optimal
system ΘL of subalgebras.

The following discussion demonstrates the application of our algorithm [2] to the 7-dimen-
sional algebra 4. We start our calculation with the series of ideals

{} ⊂ {V [1], V [4]} ⊂ {V [1], V [4], V [7]} ⊂ {V [1], V [3], V [4], V [5], V [6], V [7]}
⊂ {V [1], V [2], V [3], V [4], V [5], V [6], V [7]} = L7

and take the maximal Abelian ideal Imax ={V [1], V [4], V [7]}. The related factor algebra L7\Imax

is {V [2], V [3], V [5], V [6]}. Now we are doing the same step with this factor algebra. The series
of ideals is

0 ⊂ {V [2], V [5]} ⊂ {V [2], V [3], V [5], V [6]}

with the maximal Abelian subalgebra {V [2], V [5]}. The related factor algebra reads {V [3], V [6]}.
By starting with the smallest factoralgebra we have to express a general vector Y by a linear
combination of the vectors V [3], V [6]:

Y1 = x3V [3] + x6V [6], Y2 = y3V [3] + y6V [6]. (6)

The coefficient matrix of (6) reads
(
x3 x6

y3 y6

)
which allows manipulation by row and application

of the adjoint representation of the ranks 2, 1, 0. The classification of the above matrix delivers
the result in Table 2.

Table 2. Optimal system of the two-dimensional subalgebra {V [3], V [6]}.
Dimension Subalgebras

2 {V [3], V [6]}
1 {V [3] + x6V [6]}, x6 �= 0,

{V [3]}, {V [6]}
0 {}

Now we have to consider the first extension of the algebra. An equation similar to (6) leads
to the matrix


u2 u5 u3 u6

v2 v5 v3 v6
x2 x5 x3 x6

y2 y5 y3 y6


 (7)
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which has to be classified. It allows the ranks 4, 3, 2, 1, 0. In addition there exists a block
structure. The 2 × 2 matrix in the lower right corner with the indices (3, 6) and the matrix in
the upper left corner with the indices (2, 5).

We start our calculation with the matrix in the upper left corner related to the indices (2, 5),
which allows the ranks 2, 1, 0. The results are

Table 3. Optimal system of the subalgebra {V [2], V [5]}.
Dimension Subalgebras

2 {V [2], V [5]}
1 {V [2] + u5V [5]}, u5 �= 0,

{V [2]}, {V [5]}

For the rank 0 the upper left matrix (2, 5) only contains 0. So we have to consider the
matrix containing the last two lines of (7). The block matrix with (3, 6) index runs through all
subalgebras of Table 2. The final result of this calculation step is

Table 4. Optimal system of the subalgebra {V [2], V [5], V [3], V [6]}.
Dimension Subalgebras

4 {V [3], V [6], V [2], V [5]}
3 {V [3], V [6], V [2] + x5V [5]}, {V [3], V [6], V [2]}, {V [3], V [6], V [5]}

{V [3] + x6V [6], V [2], V [5]}, {V [3], V [2], V [5]}, {V [6], V [2], V [5]}
2 {V [3] + x6V [6], V [2] + x5V [5]}, {V [3] + x6V [6], V [2]}, {V [3] + x6V [6], V [5]},

{V [3], V [2] + x5V [5]}, {V [3], V [2]}, {V [3], V [5]}, {V [6], V [2] + x5V [5]}, {V [6], V [2]},
{V [6], V [5]}, {V [2], V [5]}, {x2V [2] + x5V [5] + V [3], y2V [2] + y5V [5] + V [6]},
{x2V [2] + x5V [5] + V [3] + x6V [6], y2V [2] + y5V [5]}, {x2V [2] + x5V [5] + V [3], y2V [2] + y5V [5]},
{x2V [2] + x5V [5] + V [6], y2V [2] + y5V [5]}, {V [3], V [6]}

1 {V [2] + x5V [5]}, {V [2]}, {V [5]}, {V [3] + x6V [6]}, {V [3]}, {V [6]}

In the next step of our algorithm [2], we have to consider the properties of the matrix




a1 a4 a7 a5 a3 a6

b1 b4 b7 b5 b3 b6
c1 c4 c7 c5 c3 c6
u1 u4 u7 u5 u3 u6

v1 v4 v7 v5 v3 v6
x1 x4 x7 x5 x3 x6

y1 y4 y7 y5 y3 y6



. (8)

It desintegrates into a block structure where we have to consider the matrix in the upper left
corner (first three lines) with the indices (1, 3, 7). It allows the ranks 3, 2, 1, 0. The result of
this classification is

Table 5. Optimal system of the subalgebra {V [1], V [4], V [7]}.
Dimension Subalgebras

3 {V [1], V [4], V [7]}
2 {V [1] + a7V [7], V [4] + b7V [7]}, {V [1] + a4V [4], V [7]}, {V [4], V [7]}
1 {V [1] + a4V [4] + a7V [7]}, {V [1] + a7V [7]}, {V [1]}, {V [4] + a7V [7]}, {V [7]}

By taking into account the block structure we have the matrix in the upper left corner with
the indices (1, 4, 7) (first three lines) and the matrix in the right left corner with the indices
(2, 5, 3, 6) (last four lines). To classify the whole matrix (8) every subalgebra of the upper left
corner from Table 5 has to combine with every subalgebra of the lower right corner from Table 4.

For the rank 0 we have to investigate the matrix built by the last four lines of (8). The block
matrix with the indices (2, 5, 3, 6) runs through all subalgebras of Table 4. The final result of
classifying this matrix is given in Table 6.
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Table 6. Optimal system of the subalgebra {V [1], V [4], V [7], V [2], V [5], V [3], V [6]}.
Dimension Optimal system

4 {V [3], v1V [1] + V [6], x1V [1] + V [2] + x5V [5], y1V [1]}, {V [3], v1V [1] + V [6], V [5], y1V [1]},
{V [2] + u7V [7], V [5] + v7V [7], V [3], y7V [7]}, {V [2] + u4V [4] + u7V [7], V [5], V [3], y4V [4] + y7V [7]},
{V [2] + u4V [4], V [3] + v6V [6], V [4], V [7]}, {V [2] + u7V [7], V [3] + v6V [6], V [4], V [7]},
{V [5] + u7V [7], V [3] + v6V [6], V [4], V [7]}, {u4V [4] + V [5], V [3] + v6V [6], V [4], V [7]},
{V [2] + u5V [5] + u7V [7], V [3], V [4], V [7]}, {V [2] + u5V [5], V [3], V [1], V [4] + y7V [7]},
{u1V [1] + V [2] + u5V [5], V [3], V [1], V [7]}, {V [2] + u4V [4] + u5V [5], V [3], V [4], V [7]},
{u1V [1] + V [2] + u7V [7], V [3], V [1], V [7]}, {u1V [1] + V [2] + u7V [7], V [3], V [4], V [7]},
{u1V [1] + V [2] + u4V [4], V [3], V [1], V [4]}, {u1V [1] + V [2], V [3], V [1], V [7]},
{V [2] + u4V [4], V [3], V [4], V [7]}, {V [5] + u7V [7], V [3], V [4], V [7]},
{u1V [1] + V [5], V [3], V [1], V [4] + y7V [7]}, {u1V [1] + V [5], V [3], V [1], V [7]},
{u4V [4] + V [5], V [3], V [4], V [7]}, {u1V [1] + V [6], v1V [1] + V [2] + v5V [5] + v7V [7], V [4], V [7]},
{u1V [1] + V [6], v1V [1] + V [2] + v4V [4] + v5V [5], V [4], V [7]},
{u1V [1] + V [6], v1V [1] + V [2] + v7V [7], V [4], V [7]}, {u1V [1]+V [6], v1V [1]+V [2]+v4V [4], V [4], V [7]},
{u1V [1] + V [6], v1V [1] + V [5] + v7V [7], V [4], V [7]}
{u1V [1] + V [6], v1V [1] + v4V [4] + V [5], V [4], V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + x7V [7], V [1] + x7V [7], V [4] + y7V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x4V [4], V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [4], V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x7V [7], V [4] + y7V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x4V [4], V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v4V [4] + V [6] + v7V [7], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v4V [4] + V [6], V [4], V [7]},
{u2V [2] + V [3] + u5V [5] + u6V [6], v2V [2] + v5V [5] + v7V [7], V [4], V [7]},
{u2V [2] + V [3] + u5V [5] + u6V [6], v2V [2] + v4V [4] + v5V [5], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v5V [5] + v7V [7], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v5V [5], V [1], V [4] + y7V [7]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v5V [5], V [1], V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v4V [4] + v5V [5], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5] + V [6] + v7V [7], V [4], V [7]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v4V [4] + v5V [5] + V [6], V [1], V [4]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v4V [4] + v5V [5] + V [6], V [4], V [7]},
{u1V [1] + u2V [2] + u5V [5] + V [6], v1V [1] + v2V [2] + v5V [5] + v7V [7], V [4], V [7]},
{u1V [1] + u2V [2] + u5V [5] + V [6], v1V [1] + V [2] + v4V [4] + v5V [5], V [4], V [7]},
{V [3], V [6] + v7V [7], V [4], V [7]}, {V [3], v4V [4] + V [6], V [4], V [7]},
{u1V [1] + V [2] + u5V [5] + V [6], V [1], V [4], V [7]},
{u1V [1] + V [2] + u4V [4] + v5V [5], V [1], V [4], V [7]},
{u1V [1] + V [2] + u4V [4] + v5V [5], V [1], V [4], V [7]},
{u1V [1] + V [2] + v7V [7], V [1], V [4], V [7]}, {u1V [1] + V [2] + v4V [4], V [1], V [4], V [7]},
{u1V [1] + V [5] + u7V [7], V [1], V [4], V [7]}, {u1V [1] + u4V [4] + V [5], V [1], V [4], V [7]},
{V [3] + u6V [6], V [1], V [4], V [7]}, {V [3], V [1], V [4], V [7]}, {u1V [1] + V [6], V [1], V [4], V [7]}

3 {V [3], V [6], V [2] + x5V [5]}, {V [3], V [6], V [2]}, {V [3], V [6], V [5]}, {V [2], V [5], V [3] + x6V [6]},
{V [2], V [3], V [5]},{u1V [1] + V [2], v1V [1] + V [5], x1V [1] + V [6]}, {u1V [1] + V [2], V [3] + v6V [6], V [1]},
{u1V [1] + V [5], V [3] + v6V [6], V [1]}, {u1V [1] + V [2] + u5V [5], V [3], V [1]},
{V [2] + u5V [5], V [3], V [4] + x7V [7]}, {V [2] + u4V [4] + u5V [5], V [3], V [4]},
{V [2] + u5V [5], V [3], V [7]}, {u1V [1] + V [2], V [3], V [1]}, {V [2], V [3], V [4] + x7V [7]},
{V [2] + u4V [4], V [3], V [4]}, {V [2], V [3], V [7]}, {V [5] + u7V [7], V [3], V [7]},
{u1V [1] + V [5], V [3], V [1]},
{V [5], V [3], V [4] + x7V [7]}, {u4V [4] + V [5], V [3], V [4]}, {V [5], V [3], V [7]},
{u1V [1] + V [6], v1V [1] + V [2] + v5V [5], V [1]}, {u1V [1] + V [6], v1V [1] + V [2], V [1]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x4V [4] + x7V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x7V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [1]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [4]},
{u1V [1] + V [2] + u7V [7], v1V [1] + v4V [4] + V [5] + v7V [7], V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x4V [4] + x7V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [1] + x7V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [1]},
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Dimension Optimal system

3 {u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [4]},
{u1V [1] + V [2] + u4V [4], v1V [1] + v4V [4] + V [5] + v7V [7], V [7]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v5V [5] + V [6], V [1]},
{u2V [2] + V [3] + u5V [5] + u6V [6], v1V [1] + v2V [2] + v5V [5], V [1]},
{u2V [2] + V [3] + u5V [5], v1V [1] + v2V [2] + v5V [5], V [1]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5], V [4] + x7V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v4V [4] + v5V [5], V [4]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5], V [7]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5] + V [6], V [1]},
{V [3], v1V [1] + V [6], V [1]}, {u1V [1] + V [2] + u5V [5] + u7V [7], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u5V [5] + u7V [7], V [1] + v4V [4], V [7]},
{u1V [1] + V [2] + u5V [5] + u7V [7], v4V [4], V [4] + x7V [7]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [1] + v4V [4], V [7]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [4], V [7]},
{u1V [1] + V [2] + u7V [7], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u7V [7], V [1] + v4V [4], V [7]},
{u1V [1] + V [2] + u7V [7], V [4], V [7]}, {u1V [1] + V [2] + u4V [4], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u4V [4], V [1] + v4V [4], V [7]}, {u1V [1] + V [2] + u4V [4], V [4], V [7]},
{u1V [1] + V [5] + u7V [7], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [5] + u7V [7], V [1] + v4V [4], V [7]},
{u1V [1] + V [5] + u7V [7], V [4], V [7]}, {u1V [1] + u4V [4] + V [5], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + u4V [4] + V [5], V [1] + v4V [4], V [7]}, {u1V [1] + u4V [4] + V [5], V [4], V [7]},
{V [3] + u6V [6], V [4], V [7]}, {V [3], V [1] + v7V [7], V [4] + x7V [7]}, {V [3], V [1] + v4V [4], V [7]},
{V [3], V [4], V [7]}, {u1V [1] + V [6], V [4], V [7]},
{u1V [1] + V [2] + u5V [5] + u7V [7], V [1] + v7V [7], V [4] + x7V [7]},
{u1V [1] + V [2] + u5V [5], +u7V [7], V [1] + v4V [4] + V [7]}

2 {V [2] + u5V [5], V [3] + v6V [6]}, {V [2], V [3] + v6V [6]}, {u1V [1] + V [5], V [3] + v6V [6]},
{V [2] + u5V [5], V [3]}, {V [2], V [3]}, {V [5], V [3]}, {u1V [1] + V [6], v1V [1] + V [2] + v5V [5]},
{u1V [1] + V [6], v1V [1] + V [2]}, {u1V [1] + V [6], v1V [1] + V [5]},
{u1V [1] + u7V [7] + V [2], v1V [1] + v4V [4] + v7V [7] + V [5]},
{u1V [1] + u4V [4] + V [2], v1V [1] + v4V [4] + v7V [7] + V [5]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5]}, {u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5] + V [6]},
{u2V [2] + V [3] + u5V [5], v2V [2] + v5V [5] + V [6]},
{u1V [1] + u2V [2] + u5V [5] + V [6], v1V [1] + v2V [2] + v5V [5]},
{V [3], V [6]}, {u1V [1] + V [2] + u5V [5] + u7V [7], V [1] + v4V [4] + v7V [7]},
{u1V [1] + V [2] + u5V [5] + u7V [7], V [1] + v7V [7]}, {u1V [1] + V [2] + u5V [5] + u7V [7], V [1]},
{u1V [1] + V [2] + u5V [5] + u7V [7], V [4] + v7V [7]}, {u1V [1] + V [2] + u5V [5] + u7V [7], V [4]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [1] + v4V [4] + v7V [7]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [1] + v7V [7]}, {u1V [1] + V [2] + u4V [4] + u5V [5], V [1]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [4] + v7V [7]}, {u1V [1] + V [2] + u4V [4] + u5V [5], V [4]},
{u1V [1] + V [2] + u4V [4] + u5V [5], V [7]}, {u1V [1] + V [2] + u7V [7], V [1] + v4V [4] + v7V [7]},
{u1V [1] + V [2] + u7V [7], V [1] + v7V [7]}, {u1V [1] + V [2] + u7V [7], V [1]},
{u1V [1] + V [2] + u7V [7], V [4] + v7V [7]}, {u1V [1] + V [2] + u7V [7], V [4]},
{u1V [1] + V [2] + v4V [4], V [1] + v4V [4] + v7V [7]}, {u1V [1] + V [2] + v4V [4], V [1] + v7V [7]},
{u1V [1] + V [2] + v4V [4], V [1]}, {u1V [1] + V [2] + v4V [4], V [4] + v7V [7]},
{u1V [1] + V [2] + v4V [4], V [4]}, {u1V [1] + V [2] + v4V [4], V [7]},
{u1V [1] + V [5] + u7V [7], V [1] + v4V [4] + v7V [7]}, {u1V [1] + V [5] + u7V [7], V [1] + v7V [7]},
{u1V [1] + V [5] + u7V [7], V [1]}, {u1V [1] + V [5] + u7V [7], V [4] + v7V [7]},
{u1V [1] + V [5] + u7V [7], V [4]}, {u1V [1] + V [5] + u7V [7], V [7]},
{u1V [1] + u4V [4] + V [5], V [1] + v4V [4] + v7V [7]}, {u1V [1] + u4V [4] + V [5], V [1] + v7V [7]},
{u1V [1] + u4V [4] + V [5], V [1]}, {u1V [1] + u4V [4] + V [5], V [4] + v7V [7]},
{u1V [1] + u4V [4] + V [5], V [4]}, {u1V [1] + u4V [4] + V [5], V [7]}, {V [3] + u6V [6], V [1]},
{V [3], V [1] + v4V [4] + v7V [7]}, {V [3], V [1] + v7V [7]}, {V [3], V [1]}, {V [3], V [4] + v7V [7]},
{V [3], V [4]}, {V [3], V [7]}, {u1V [1] + V [6], V [1]}

1 {u1V [1] + u7V [7] + V [2] + u5V [5]}, {u1V [1] + u4V [4] + V [2] + u5V [5]},
{u1V [1] + u7V [7] + V [2]}, {u1V [1] + u4V [4] + V [2]},
{u1V [1] + u7V [7] + V [5]}, {u1V [1] + u4V [4] + V [5]}, {V [3]}



Symmetry Analysis of (2 + 1)-Dimensional Doebner–Goldin Equations 289

Therefore the subalgebras of L7 are classified. We can find one 7-dimensional, 9 six-dimensio-
nal, 39 five-dimensional, 145 four-dimensional, 168 three-dimensional, 88 two-dimensional, 7 one-
dimensional and one zero-dimensional subalgebras.

5 Conclusion

In our examination we have calculated the infinitesimals for each equation of the set of Doebner–
Goldin–Madelung models. We found 10-, 8- and 7-dimensional algebras which were investigated.
For the 7-dimensional algebra we have determined the optimal systems.

By application of the statements at the beginning of Section 4 we can calculate for every one
and two-dimensional optimal-system the related reduction. In the case of the one-dimensional
optimal system the result is a system of equations with two new independent variables whether
for the 2-dimensional optimal system the reduced system will be an ordinary differential equation
system which can be solved. More details can be found in [2]. In this situation we want to
emphasize that it is necessary to take isomorphic investigations into account. A closer look at
the commutator table shows that the algebras of each dimension look very similar.
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