On Certain Quotient of Temperley-Lieb Algebra

Mariya O. VLASENKO

Institute of Mathematics of NAS Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine
E-mail: mariyka@imath.kiev.ua

Abstract

We consider a certain quotient of Temperley-Lieb algebra of general Coxeter system. This algebra arises as a quotient of Hecke algebra by some more relations than a Temperley-Lieb one. These additional relations correspond to the pairs of commuting generators of Coxeter system in the same way as Temperley-Lieb relations correspond to noncommuting generators. We prove that such algebras are usually well behaved. Especially for an irreducible system whose Coxeter graph does not contain a cycle this quotient is a sum of a matrix algebra and a field for all except a finite set of values of parameter.

1 Hecke deformation of Coxeter group algebra and its quotients

In this section we associate an algebra to a Coxeter group. This algebra is a certain quotient of the Temperley-Lieb algebra associated to the same Coxeter group. In further sections we show that such an algebra usually has simple enough structure.

Let W be a Coxeter group with set $S \subset W$ of generating reflections, let $l: W \longrightarrow \mathbb{N}_{0}$ be length correspondent to generators S. Let $q \in \mathbb{C}$.

Definition 1. The Hecke algebra $H_{q}=H_{q}(W)$ is an associative \mathbb{C}-algebra with $\mathbf{1}$, spanned by elements $\left\{T_{w} ; w \in W\right\}$ with multiplication

$$
T_{s} T_{w}= \begin{cases}T_{s w}, & l(s w)=l(w)+1 \\ (q-1) T_{w}+q T_{s w}, & l(s w)=l(w)-1\end{cases}
$$

for $s \in S$ and $w \in W$. Here $T_{\mathbf{1}}=\mathbf{1}_{H_{q}}$.
Note that H_{q} is a deformation of Coxeter group algebra $H_{1}=\mathbb{C} W$, and its dimension (growth) is not greater then for $\mathbb{C} W$. For the general theory of Hecke algebras arising from Coxeter systems see [1,2].

Consider for any pair of different reflections $s_{i}, s_{j} \in S$ a subgroup $W_{i, j} \subset W$ generated by s_{i} and $s_{j} . W_{i, j}$ is a dihedral group with $2 m$ elements, where m is an order of element $s_{i} s_{j}$ in W.
Definition 2. The complete Temperley-Lieb algebra $T L_{q}^{c}=T L_{q}^{c}(W)$ is a quotient of $H_{q}(W)$ by relations

$$
\begin{equation*}
\sum_{w \in W_{i, j}} T_{w}=0 \tag{1}
\end{equation*}
$$

for each pair of different generators $s_{i}, s_{j} \in S$.
Note that quotient of $H_{q}(W)$ by relations (1) for each pair of noncommuting generators $s_{i}, s_{j} \in S$ is called the Temperley-Lieb algebra $T L_{q}=T L_{q}(W)$ (see [3] and references there). So, $T L_{q}^{c}$ is a quotient of $T L_{q}$.

Remark 1. There is a way to consider Hecke and Temperley-Lieb algebras where q is indeterminate. For example, in $[4,5]$ this is done for Coxeter groups of type A (symmetric groups). That is well known that Temperley-Lieb algebra of symmetric group S_{n} over $\mathbb{C}(q)$ is semisimple,
and its evaluation at $q \in \mathbb{C} \backslash\{0\}$ is also semisimple if and only if $q+q^{-1}+2 \neq 4 \cos ^{2} \frac{\pi}{m}$ for some $2 \leq m \leq n$ (see, for example, [2]). In [3] Hecke and Temperley-Lieb algebras of general Coxeter groups are considered over the ring of Laurent polynomials $\mathcal{A}=\mathbb{Z}\left[v, v^{-1}\right]$ where $q=v^{2}$. Then a set $\left\{T_{w} ; w \in W\right\}$ would be an \mathcal{A}-basis of Hecke algebra. In [6] \mathcal{A}-basis of Temperley-Lieb algebra $T L_{q}$ is given as a certain subset of $\left\{T_{w} ; w \in W\right\}$.

In this paper all algebras will be algebras with 1 over field \mathbb{C}. In the following section we apply combinatorial argumentation based on Diamond lemma to algebras $T L_{q}^{c}$. A restriction to algebras over a field (not ring) is essential here. For Diamond lemma and Groebner basis see, for example, [7].

2 Presentation of $\boldsymbol{T} L_{q}^{c}$ via idempotents. Linear basis

Now (and till the end of the paper) we restrict to the class of Coxeter groups (W, S) where $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a finite set and for each $1 \leq i<j \leq n$ an element $s_{i} s_{j}$ has an order either 2 or 3 . Let also $q \neq-1,0$.

In this section we propose another presentation of an algebra $T L_{q}^{c}(W)$, which is useful to find its linear basis and calculate the dimension (or Gelfand-Kirillov dimension).

Consider $p_{i}=\frac{T_{s_{i}}+1}{q+1} \in H_{q}$, and $\tau=\frac{q}{(1+q)^{2}}$. Then $p_{i}^{2}=p_{i}$. Consider two cases.
If s_{i} and s_{j} commute in W, then $T_{s_{i}}$ and $T_{s_{j}}$ commute, and p_{i}, p_{j} also commute:

$$
\begin{equation*}
p_{i} p_{j}=p_{j} p_{i} \tag{2}
\end{equation*}
$$

In $T L_{q}^{c}$ we have relation $1+T_{s_{i}}+T_{s_{j}}+T_{s_{i}} T_{s_{j}}+T_{s_{j}} T_{s_{i}}=0$, which is equivalent to

$$
\begin{equation*}
p_{i} p_{j}=p_{j} p_{i}=0 \tag{3}
\end{equation*}
$$

If $s_{i} s_{j}$ has order 3 in W, then $T_{s_{i}} T_{s_{j}} T_{s_{i}}=T_{s_{j}} T_{s_{i}} T_{s_{j}}$ in H_{q}, which is equivalent to

$$
\begin{equation*}
p_{i} p_{j} p_{i}-\tau p_{i}=p_{j} p_{i} p_{j}-\tau p_{j} . \tag{4}
\end{equation*}
$$

Then in $T L_{q}$ and $T L_{q}^{c}$ there is a relation $1+T_{s_{i}}+T_{s_{j}}+T_{s_{i}} T_{s_{j}}+T_{s_{j}} T_{s_{i}}+T_{s_{i}} T_{s_{j}} T_{s_{i}}=0$, which is equivalent to

$$
\begin{equation*}
p_{i} p_{j} p_{i}-\tau p_{i}=p_{j} p_{i} p_{j}-\tau p_{j}=0 \tag{5}
\end{equation*}
$$

As it can be seen from the definitions, $H_{q}, T L_{q}^{c}$ and $T L_{q}$ can be presented via generators $T_{S_{i}}$, $s_{i} \in S$ with relations mentioned above. So, we get the following presentation

Proposition 1. $H_{q}(W)$ is generated by idempotents p_{1}, \ldots, p_{n} with relations (4) for each pair of noncommuting generators $s_{i}, s_{j} \in W$ and (2) for each pair of commuting generators $s_{i}, s_{j} \in W$.
$T L_{q}(W)$ is its quotient by relations (5) for each pair of noncommuting generators $s_{i}, s_{j} \in W$.
$T L_{q}^{c}(W)$ is a quotient of $T L_{q}(W)$ by relations (3) for each pair of commuting generators $s_{i}, s_{j} \in W$.

In [8] and [9] they study $*$-representations of algebras, generated by projections, which are exactly $T L_{q}^{c}$ of Coxeter groups of type A_{n} and $\widetilde{A_{n}}$ correspondingly.

In work [10] of the author some generalizations of $T L_{q}^{c}$ are considered, where parameter τ in (5) may depend on i, j. It is noted that relations in presentation of $T L_{q}^{c}$ by idempotents from Proposition 1 form a Groebner basis (where ordering on generators p_{i} can be taken arbitrarily, and we consider corresponding homogenous lexicographical ordering on their noncommutative
monomials). In other words, monomials in letters p_{1}, \ldots, p_{n}, which does not contain the following submonomials

$$
\begin{aligned}
& p_{i} p_{j} p_{i} \text { and } p_{j} p_{i} p_{j} \text { for each non-commuting } s_{i}, s_{j} \in W, \\
& p_{i} p_{j} \text { and } p_{j} p_{i} \text { for each commuting } s_{i}, s_{j} \in W
\end{aligned}
$$

together with 1 form a linear basis of $T L_{q}^{c}$. Consider the Coxeter graph Γ of Coxeter group W. As its vertices correspond to $s_{i} \in S$, they also correspond to $\left\{p_{i}, 1 \leq i \leq n\right\}$. So, all elements of this linear basis but $\mathbf{1}$ can be identified with paths in Γ with one restriction: we consider only such paths in which all neighboring edges differ. So, we get the following

Proposition 2. An algebra $T L_{q}^{c}(W)$ is finite-dimensional iff Coxeter graph Γ of W does not contain cycles. The dimension of $T L_{q}^{c}$ is

$$
\operatorname{dim}\left(T L_{q}^{c}\right)=1+\sum_{\Gamma^{\prime} \in \pi_{0}(\Gamma)}\left|\Gamma^{\prime}\right|^{2},
$$

where $\pi_{0}(\Gamma)$ is a set of connected components and $\left|\Gamma^{\prime}\right|$ is a number of vertices in connected component Γ^{\prime}.

If Γ contains not more than one cycle in each connected component, then the growth of an algebra $T L_{q}^{c}$ is linear, i.e. its Gelfand-Kirillov dimension equals 1.

If some connected component of Γ contains more than one cycle, an algebra $T L_{q}^{c}$ contains a free subalgebra on two generators.

3 The structure of finite-dimensional algebras $\boldsymbol{T} L_{q}^{c}$

In this section we are going to prove
Theorem 1. Let Coxeter graph Γ of group W do not contain cycles. Then for almost all $q \in \mathbb{C}$ (except a finite set)

$$
T L_{q}^{c} \cong M_{1}(\mathbb{C}) \bigoplus_{\Gamma^{\prime}} M_{\left|\Gamma^{\prime}\right|}(\mathbb{C})
$$

Remark 2. There are values of q, for which $T L_{q}^{c}$ is not semisimple. For example, $T L_{\frac{1+\sqrt{-3}}{s}}^{s}\left(S_{3}\right)$ is not semisimple as it coincides with $T L_{\frac{1+\sqrt{-3}}{2}}\left(S_{3}\right)$.

Let Γ be a tree with n vertices, and Γ_{0} be the set of its vertices. One can take any vertex $\lambda \in \Gamma$ as a root. Then binary relation of being a child is defined as usually on vertices of a rooted tree: $\beta \in \Gamma_{0}$ is a child of $\alpha \in \Gamma_{0}$ iff there is an edge between α and β and β is farther from the root λ then α. Define $c_{\lambda}: \Gamma_{0} \longrightarrow 2^{\Gamma_{0}}$ so that $c_{\lambda}(\alpha)$ is a set of children vertices of α.

We call $\lambda \in \Gamma_{0}$ a matching vertex if there exists a function $a: \Gamma_{0} \longrightarrow \mathbb{C} \backslash\{0\}$ such that

$$
\begin{equation*}
a(\alpha)+\tau \sum_{\beta \in c_{\lambda}(\alpha)} \frac{1}{a(\beta)}=1 \text { for each } \alpha \in \Gamma_{0} \tag{6}
\end{equation*}
$$

where $\tau=\frac{q}{(q+1)^{2}}$.
Lemma 1. If there is a matching vertex in graph Γ, then there is an irreducible representation of $T L_{q}^{c}$ in dimension $n=|\Gamma|$, in which all generating idempotents are nonzero.

Proof. We give an explicit construction of such a representation. Consider a vector space V with basis $\left\{e_{\beta} ; \beta \in \Gamma_{0}\right\}$. Let λ be a matching vertex. Let $a_{\beta}=\sqrt{a(\beta)}$, where $a: \Gamma_{0} \longrightarrow \mathbb{C} \backslash\{0\}$ be a function from condition (6) above. Let $g_{\beta}=a_{\beta} e_{\beta}+\sum_{\alpha \in c_{\lambda}(\beta)} \frac{\sqrt{\tau}}{a_{\alpha}} e_{\alpha}$. Consider the following action of generating idempotents:

$$
p_{\beta} e_{\mu}= \begin{cases}a_{\beta} g_{\beta}, & \mu=\beta ; \\ \frac{\sqrt{\tau}}{a_{\mu}} g_{\beta}, & \mu \in c_{\lambda}(\beta) ; \\ 0, & \text { otherwise }\end{cases}
$$

It follows from (6) that $p_{\beta} g_{\beta}=g_{\beta}$. If vertices α and β are not connected in Γ, then also $c_{\lambda}(\alpha) \cap c_{\lambda}(\beta)=\varnothing$, so $p_{\beta} g_{\alpha}=p_{\alpha} g_{\beta}=0$. If vertices α and β are connected, then one has $p_{\beta} g_{\alpha}=\sqrt{\tau} g_{\beta}$. So, given above is a representation.

To prove it is irreducible we consider matrix units acting on V :

$$
E_{\alpha, \beta} e_{\mu}= \begin{cases}e_{\alpha}, & \mu=\beta \\ 0, & \text { otherwise }\end{cases}
$$

If β is a leaf then $p_{\beta}=E_{\beta, \beta}$. Suppose that for some α matrix units $E_{\beta, \beta}$ are defined for all $\beta \in c_{\lambda}(\alpha)$ via $\left\{p_{\mu} ; \mu \in \Gamma_{0}\right\}$. Then

$$
E_{\alpha, \alpha}=\frac{1}{a_{\alpha}^{2}}\left(1-\sum_{\beta \in c_{\lambda}(\alpha)} E_{\beta, \beta}\right) p_{\alpha}\left(1-\sum_{\beta \in c_{\lambda}(\alpha)} E_{\beta, \beta}\right)
$$

also is specified. And for each $\beta \in c_{\lambda}(\alpha)$

$$
E_{\beta, \alpha}=\frac{a_{\beta}}{\sqrt{\tau} a_{\alpha}} E_{\beta, \beta} p_{\alpha} E_{\alpha, \alpha}, \quad E_{\alpha, \beta}=\frac{a_{\beta}}{\sqrt{\tau} a_{\alpha}} E_{\alpha, \alpha} p_{\alpha} E_{\beta, \beta} .
$$

Thus an image of $T L_{q}^{c}$ in $\operatorname{End}_{\mathbb{C}}(V)$ contains $E_{\alpha, \alpha}$ for all $\alpha \in \Gamma_{0}$ and $E_{\alpha, \beta}$ for all pairs of connected vertices α and β. So representation constructed above is irreducible as graph Γ is connected.

Note that it is easy to verify if some $\lambda \in \Gamma_{0}$ is matching: the values $a(\alpha)$ for $\alpha \in \Gamma_{0}$ from (6) are defined uniquely by λ. To find them one should put $a(\alpha)=1$ for all leafs α, and then calculate all other values by recursive formulae (6).

Remark 3. A tree Γ has a matching vertex for almost all $q \in \mathbb{C}$. Indeed, when arbitrary vertex λ is taken to be a root, we can define $a(\alpha)$ from (6) with values in $\mathbb{C}(q)$. Then numerators of irreducible fractions $a(\alpha) \in \mathbb{C}(q)$ is a set of certain polynomials $\left\{P_{\alpha}^{\lambda}(q) ; \alpha \in \Gamma_{0}\right\}$, and λ is a matching vertex iff $P_{\alpha}^{\lambda}(q) \neq 0$ for all $\alpha \in \Gamma_{0}$. An intersection of this finite sets for all $\lambda \in \Gamma_{0}$ is exactly the set of such $q \in \mathbb{C}$, which we exclude in Theorem 1 in case of connected Γ.

Now we are going to prove Theorem 1.
Proof. Due to Remark 3 for almost all $q \in \mathbb{C}$ all connected components $\Gamma^{\prime} \in \pi_{0}(\Gamma)$ have matching vertices. For such a q we can construct a set of irreducible representations $\left\{V^{\Gamma^{\prime}} ; \Gamma^{\prime} \in\right.$ $\left.\pi_{0}(\Gamma)\right\}$ one for each connected component. Indeed, for each Γ^{\prime} we can take a representation of corresponding subalgebra from Lemma 1, and induce representation of $T L_{q}^{c}$ putting all generating idempotents from other connected components to be zero. Moreover, in this construction representations corresponding to different connected components are nonisomorfic.

There is one more 1-dimensional representation - the trivial one, in which all generating idempotents are zero. It is nonisomorfic to any one from a list $\left\{V^{\Gamma^{\prime}} ; \Gamma^{\prime} \in \pi_{0}(\Gamma)\right\}$. So, we have a list of pairwise nonisomorfic irreducible representations, and due to Proposition 2

$$
\operatorname{dim}\left(T L_{q}^{c}\right)=\operatorname{dim}(\mathbb{C})^{2}+\sum_{\Gamma^{\prime} \in \pi_{0}(\Gamma)} \operatorname{dim}\left(V^{\Gamma^{\prime}}\right)^{2}
$$

This implies

$$
T L_{q}^{c} \cong M_{1}(\mathbb{C}) \bigoplus_{\Gamma^{\prime} \in \pi_{0}(\Gamma)} M_{\left|\Gamma^{\prime}\right|}(\mathbb{C})
$$

by Jacobson's density theorem.
[1] Humphreys J.E., Reflection groups and Coxeter groups, Cambridge, Cambridge University Presss, 1990.
[2] Barcelo H. and Ram A., Combinatorial representation theory, MSRI, 1997.
[3] Green R.M. and Losonczy J., Canonical bases for Hecke algebra quotient, Math. Res. Lett., 1999, V.6, 213-222.
[4] Goldshmidt D.M., Group characters, symmetric functions and the Hecke algebra, University Lecture Series, Vol. 4, Providence, R.I., AMS, 1993.
[5] Goodman F.M. and Wenzl H., The Temperley-Lieb algebra at roots of unity, Pacific Journ. Math., 1993, V.161, N 2, 307-333.
[6] Graham J.J., Modular representations of Hecke algebras and related algebras, PhD Thesis, University of Sydney, 1995.
[7] Ufnarovskiĭ V., Combinatorical and asimptotic methods in algebra, Current Problems in Mathematics. Fundamental Directions, Vol. 57, Moscow, VINITI, 1990, 5-177 (in Russian).
[8] Wenzl H., On sequences of projections, C.R. Math. Rep. Acad. Sci. Canada, 1987, V.9, N 1, 5-9.
[9] Popova N., On one algebra of Temperley-Lieb type, in Proceedings of Fourth International Conference "Symmetry in Nonlinear Mathematical Physics" (9-15 July, 2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and R.O. Popovych, Kyiv, Insitute of Mathematics, 2002, V.43, Part 2, 486-489.
[10] Vlasenko M., On the growth of algebra established by a system of projections with fixed angles, Meth. Func. Anal. Topology, 2004, to appear.

