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We analyze the conditions, assuring the existence of invariant wave patterns in the non-local
hydrodynamic models of structured media.

1 Introduction

This paper deals with a family of invariant solutions of some modelling systems of PDE, ta-
king into account non-local effects. These effects are manifested when an intense pulse loading
(impact, explosion etc.) is applied to media, possessing an internal structure on mesoscale.
Description of the non-linear waves propagation in such media depends in essential way on the
ratio of a characteristic size d of elements of the medium structure to a characteristic length
λ of the wave pack. If d/λ is O(1), then the basic concepts of continuum mechanics are not
applicable any more, and one should use the description, based, e.g. on the element dynamics
methods [1]. The applications of classical continuum mechanics equations are justified in those
cases, when d/λ � 1, and the discreteness of the matter could be completely ignored.

The models studied in this work apply when the ratio d/λ is much less that unity and therefore
the continual approach is still valid, but it is not as small that we can ignore the presence of the
internal structure. As it has been shown in a number of papers (see e.g. [2]), in the long wave
approximation the balance equations for mass and momentum retain their classical form, which
in the one-dimensional case can be written as follows:

ut + px = 0, ρt + ρ2ux = 0, (1)

where u is the mass velocity, p is the pressure, ρ is the density, t is the time, x is the mass
(Lagrangian) coordinate, lower indices denote partial derivatives with respect to subsequent
variables. Thus, the whole information about the presence of structure in this approximation is
contained in a dynamic equation of state (DES), which should be incorporated to system (1) in
order to make it closed.

Generally speaking, DES take on the form of integral equations [3], linking the thermody-
namical flows In and generalized thermodynamical forces Lm, causing these flows:

In =
∫ t

−∞
dt′

∫
R

dx′Knm(t, t′, x, x′)Lm(t′, x′). (2)

Here Knm(t, t′, x, x′) is a kernel, taking into account nonlocal effects. Function Knm can be
calculated, in principle, by solving dynamic problem of structure’s elements interaction, however
such calculations are extremely difficult. Therefore in practice one uses, as a role, some model
kernels, describing well enough the main properties of the non-local effects and, in particular,
the fact that these effects vanish rapidly as |t − t′| and |x − x′| grow. This property will enable
us to pass from the equations of the integro-differential type to systems of differential equations,
including higher-order derivatives.
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Thus our goal is to present the modelling systems, associated with the integral DES, which
describe the non-local effects connected with structure. We show that, in spite of the fact
that the systems of PDE’s considered here are not Hamiltonian, they do possess families of
invariant solutions, satisfying certain systems of ODE’s, being equivalent to the Hamiltonian
ones. Due to this property, it becomes possible to state the existence of periodic and soliton-like
solutions, which are inherent to the models of structured media and presumably do not occur in
hydrodynamic-type models of structureless media. At least, that is true under the assumption
that the characteristic velocity of the wave perturbations is a growing function of ρ.

2 Invariant localized solutions in the model
with spatial nonlocality

One of the simplest state equation accounting for the effects of spatial nonlocality takes on the
form [4]:

p = σ̂

∫ +∞

−∞
ρn(t, x′) exp

{
− [(

x − x′) /l
]2

}
dx′. (3)

Since the kernel K(x, x′) = exp
{
− [(x − x′) /l]2

}
extremely quickly approaches zero as |x − x′|

grows, we can substitute the function ρn(t, x′) by its decomposition into the power series:

ρn(t, x′) = ρn(t, x) + [ρn(t, x)]x
x′ − x

1!
+ [ρn(t, x)]xx

(x′ − x)2

2!
+ o

(|x − x′|2) ,

obtaining this way so called gradient model [4]:

p = c0σ̂ρn(t, x) + c2σ̂[ρn(t, x)]xx. (4)

Here

c0 = l

∫ +∞

−∞
e−τ2

dτ = l
√

π, c2 =
l3

2

∫ +∞

−∞
τ2e−τ2

dτ =
l3
√

π

4
.

Inserting (4) into the first equation of system (1), we obtain a closed system:

ut + βρν+1ρx + σ
[
ρν+1ρxxx + 3(1 + ν)ρνρxρxx + ν(1 + ν)ρν−1ρ3

x

]
= 0,

ρt + ρ2ux = 0, (5)

where n = ν + 2, β = c0σ̂(ν + 2), σ = c2σ̂(ν + 2). Below we analyze a family of invariant
travelling wave solutions

u = U(ω), ρ = R(ω), ω = x − Dt. (6)

Inserting the anzatz (6) into the second equation of system (5), we obtain the first integral:

U = C1 − D/R. (7)

Asymptotic conditions lim
ω→+∞U(ω) = 0, lim

ω→+∞R(ω) = R1 > 0, which we assume to take

place further on, get the expression C1 = D/R1. Substituting (6) into the second equation of
system (5) and using the formula (7), we obtain a third-order equation for function R(ω). This
equation can also be integrated, and, having done that, we finally get the second order ODE

D2

R
+

β

ν + 2
Rν+2 + σ

[
Rν+1 d2R

dω2
+ (ν + 1)Rν

[
dR

dω

]2
]

= E, (8)
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where

E =
D2

R1
+

β

ν + 2
Rν+2

1 , (9)

is a constant of integration, defined by the conditions on +∞.
Let us write equation (8) in the form of the first order dynamic system:

dR

dω
= Y,

dY

dω
=

(
σRν+2

)−1
{

ER −
[
D2 +

β

ν + 2
Rν+3 + σ(ν + 1)Rν+1Y 2

]}
. (10)

It is evident that all isolated critical points of system (10) are located on the horizontal axis
OR. They are determined by solutions of the algebraic equation

P (R) =
β

ν + 2
Rν+3 − ER + D2 = 0. (11)

As can be easily seen, one of the roots of equation (11) coincides with R1. Location of the second
real root depends on relations between the parameters. If ν + 3 > 1 and D2 satisfies inequality

D2 > D2
cr = βRν+3

1 , (12)

then there exists the second critical point R2 > R1. Moreover, if ν > 0 is a natural number,
then the polynomial P (R) has the representation

P (R) = (R − R1)(R − R2)Ψ(R), (13)

where

Ψ(R) =
β

(ν + 2) (R2 − R1)
{
Rν+1 + Rν(R2 − R1) + · · · + R

(
Rν

2 − Rν
1

)
+

(
Rν+1

2 − Rν+1
1

)}
.

Note that Ψ(R) is positive, when R > 0. It is a direct consequence of the existence of represen-
tation (13) when ν is a natural number. But this is also true for any ν > −2, or, in other words,
whenever the function Rν+3 is concave for positive R.

Analysis of linearization matrix for the system (10)

M̂(Ri, 0) =

[
0 1(

σRν+2
i

)−1 Ψ(Ri)(Rj − Ri) 0

]
, i = 1, 2, j �= i (14)

shows that the critical points A1(R1, 0) is a saddle, while the critical point A2(R2, 0) is a center.
Thus, system (10) has only such critical points that are characteristic to the Hamiltonian system.
This circumstance suggests that there could exist a Hamiltonian system equivalent to (10). The
Hamiltonian function would help us to make a complete study of the phase portrait of system (10)
and find out homoclinic trajectories, which correspond to a soliton-like wave packs, providing
that such trajectories do exist.

If we introduce a new independent variable T , obeying the equation d
dT = σRν+2φ(R, Y ) d

dω ,
then system (10) can be written as

dR

dT
= σRν+2φ(R, Y ),

dY

dT
= φ(R, Y )

(
ER −

[
D2 +

β

ν + 2
Rν+3 + σ(ν + 1)Rν+1Y 2

])
. (15)
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Here φ(R, Y ) is a function, that is to be chosen in such a way that system (15) be Hamiltonian.
So we assume the existence of a function H(R, Y ), satisfying the system

∂H

∂Y
= σRν+2φ(R, Y ),

∂H

∂R
= −φ(R, Y )

{
ER −

[
D2 +

β

ν + 2
Rν+3 + σ(ν + 1)Rν+1Y 2

]}
.

Equating mixed derivatives of H, we obtain the characteristic system

dR

σRν+2Y
=

dY

ER − [D2 + β
ν+2Rν+3 + σ(ν + 1)Rν+1Y 2]

=
dφ

νσY Rν+1φ
. (16)

The general solution of system (16) can be written as follows:

φ = RνΨ(Ω),

where Ψ(·) is an arbitrary function of the variable

Ω = Rν+1
{

Y 2 + D2σ−1R−(ν+1) lnR + R2β/[σ(ν + 2)(ν + 3)] − Eσ−1R−ν
}

.

Putting φ = 2Rν , we can easily restore the Hamiltonian function:

H = 2D2 Rν+1

ν + 1
+

β

(ν + 2)2
R2(ν+2) + σY 2R2(ν+1) − 2E

Rν+2

ν + 2
. (17)

By elementary checking one can get convinced that the function H is constant on phase
trajectories of both systems (10) and (15), and since the integrating multiplier φ = 2Rν , oc-
curring in formula (15) is positive for R > 0, then phase trajectories of systems (10) and (15)
are almost similar in the right half-plane of the phase plane (R, Y ), the only difference between
them manifesting in velocities of motion. Thus all the statements concerning the geometry of
the phase trajectories of system (15) lying in the right half-plane is applicable to corresponding
solutions of system (10).

Using the linear analysis we showed that the critical point A2(R2, 0) is a center. Stated above
relations between systems (10) and (15) enable to conclude that this point does not change when
the nonlinear terms are added. This means that the critical point A2(R2, 0) is surrounded by
closed trajectories and hence the source system (5) possesses a one-parameter family of periodic
solutions. If the right branches of the separatrices of the saddle A1(R1, 0) go to infinity (the
stable branch W s when t → −∞ and the unstable branch W u when t → +∞), then the domain
of finite periodic motions is unlimited. Another possibility is connected with the existence of
homoclinic trajectories in phase space. In this case the domain of periodic solutions is bounded,
and the source system, besides periodic solutions, possesses localized soliton-like regimes. To
answer the question on which of the above mentioned possibilities is realised in system (10), the
behavior of the saddle separatices, lying to the right from the line R = R1 should be analyzed.
We obtain the equation for saddle separatices by putting H = H(R1, 0) = H1 in the left hand
side of the equation (17) and solving it next with respect to Y :

Y = ±

√
H1 + 2E Rν+2

ν+2 −
[
2D2 Rν+1

ν+1 + β
(ν+2)2

R2(ν+2)
]

√
σRν+1

. (18)

It is evident from equation (18), that incoming and outgoing separatrices are symmetrical with
respect to OR axis. Therefore we can restrict our analysis to one of them, e.g. to the upper
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separatrix Y+. First of all, let us note, that in the point(R1, 0) separatrix Y+ forms with OR
axis a positive angle

α = arctan
√

(R2 − R1)Ψ(R1)/
(
σRν+2

1

)
.

The above formula arises from the linear analysis of system (10) in critical point A1(R1, 0). So
Y+(R) is increasing when R − R1 is small and positive. On the other hand, function

G(R) = H1 + 2E
Rν+2

ν + 2
−

[
2D2 Rν+1

ν + 1
+

β

(ν + 2)2
R2(ν+2)

]
,

standing inside the square root in equation (18), tends to −∞ as R → +∞, because the coeffi-
cient at the highest order monomial R2(ν+2) is negative, while the index ν + 2 is assumed to be
positive. Therefore the function G(R) intersects the open set R > R1 of the OR axis at least
once. Let us denote a point of the first intersection by R3, and let us assume that R3 > R2. If
with this assumption we were able to prove that Y±(R) form the right angle with the OR axis
at the point R3, then we would have the evidence of the continuous homoclinic loop existence.

We begin with the note that limR→R−
3

G(R) = +0. Calculating derivative of G(R) we have:

G′(R) = −2Rν

(
β

ν + 2
Rν+3 − ER + D2

)
= −2RνP (R). (19)

It follows from the decomposition (13) that G′(R) < 0 when R > R2. Therefore

lim
R→R−

3

dY

dR
=

RG′(R) − 2(ν + 1)G(R)
2
√

σGRν+2
= −∞

and we merely have to show that the inequality R3 > R2 is true. Supposing that the inequalities
R1 < R3 < R2 take place, we obtain from equations (19), (13) that lim

R→R−
3

Y ′
+(R) = +∞. On

the other hand, the function Y+(R) approaches zero remaining positive as R → R−
3 . But such

behavior is impossible for any function, regular on the interval (R1, R3). The case R3 = R2

should also be excluded, because the critical point A2(R2, 0) is a center. The result obtained
can be formulated as follows.

Theorem 1. If ν > −2 and D2 > βRν+3
1 , then system (10) possesses a one parameter family

of periodic solutions, localized around the critical point A2 (R2, 0) in a bounded set M. The
boundary of this set is formed by the homoclinic intersection of separatrices of the saddle point
A1 (R1, 0).

Thus the source system (5) possesses periodic and soliton-like invariant solutions.

3 Invariant wave patterns in the model
with spatio-temporal nonlocality

In this section we consider system (1), closed by DES:

p =
∫ t

−∞
sin

t − t′

τ1
e
− t−t′

τ2 L[ρ, ρx, ρxx]dt′, (20)

where

L[ρ, ρx, ρxx] =
β

ν + 2
ρν+2(t′, x) + σ̂[ρµ+1(t′, x)ρx(t′, x)]x.
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Taking the second derivative of (20) with respect to t, we obtain a higher-order equation, which,
together with (1), forms a closed system of the following form:

ut + px = 0, ρt + ρ2ux = 0,

hptt + τpt + p =
β

ν + 2
ρν+2 + σ

[
ρµ+1ρxx + (µ + 1)ρµ(ρx)2

]
, (21)

where h = (τ1τ2)2/
(
τ2
1 + τ2

2

)
, τ = 2τ2

1 τ2/
(
τ2
1 + τ2

2

)
.

As in the previous section, we analyze the family of invariant travelling wave solutions

u = U(ω), ρ = R(ω), p = Π(ω), ω = x − Dt. (22)

Inserting (22) into (21), we obtain a system of ODE, possessing two integrals. The first one,
arising from the balance of mass equation, coincides with (7), while the second one, arising from
the momentum equation, is as follows:

Π = E − D2/R. (23)

If the conditions on +∞ are identical with those from the previous section, then the expression
for E is given by the formula (9). Taking advantage of the formulae (7), (23), we can write down
the remaining second order equation in the form of a dynamic system:

R∆φṘ = Y R∆φ,

R∆φẎ = −φ
{
R2P (R) + Y 2

[
2hD4 + σ(µ + 1)Rµ+3

]
+ τD3R2Y ∆

}
, (24)

where ∆ = σRµ+3 − hD4 and P (R) is given by the formula (13). Here we introduced an extra
function φ(R, Y ) that would help us to make system (24) Hamiltonian.

We postpone with the construction of the Hamiltonian function for system (24) and study
its critical points first, for a pure linear analysis shows that the multiplier φ(R, Y ) must have
the singularities in the area of interest, unless some parameters nullify. It is evident that all
isolated critical points of system (24) satisfy the equation (11). The case we are interested in
is again that with two real solutions R1, R2, satisfying the inequality R2 > R1. Therefore we
assume that parameter D2 satisfies the inequality (12). An extra inequality

β(ν + 3)
ν + 2

Rν+2
1 < E <

β(ν + 3)
ν + 2

Rν+2
2 , (25)

which will be used later on, is the direct consequence of the inequality (12) and concavity of the
function βRν+3.

The linearization matrix of system (24) in a critical point Ai (Ri, 0), i = 1, 2, takes on the
form:

M̂(Ri, 0) =

[
0, Ri∆iφ(Ri, 0)

φ(Ri, 0)Ri

(
3ERi − 2D2 − β(ν+5)

ν+2 Rν+3
i

)
, −φ(Ri, 0)τD3R2

i ∆i

]
, (26)

where ∆i = σRµ+3
i − hD4. Thus, the eigenvalues of matrix M̂(Ri, 0) satisfy the equation

λ
(
λ + φ(Ri, 0)τD3R2

i ∆i

)
= φ(Ri, 0)2∆iR

3
i

[
E − (ν + 3)(ν + 2)−1Rν+2

]
. (27)

Considering equation (27) together with the inequalities (25) one can easily conclude that the
features of the isolated critical points of system (24) depend in essential way on the sign of ∆i.
If R1 is placed to the right from the line ∆(R) = 0, i.e.

R4 =
(
D4h/σ

)1/(µ+3)
< R1 (28)
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and therefore inequality ∆(Ri) > 0 holds for both i = 1, 2, then the eigenvalues corresponding
to critical point A1 (R1, 0) are nonzero and have the opposite signs, so this point still is a saddle.
The critical point A2 (R2, 0) turns out to be either a stable focus, when τ is sufficiently small, or
even a stable node. Anyhow, it is rather impossible to chose a nonsingular multiplier φ, unless
τ = 0 and the critical point A2 (R2, 0) is a center.

If the inequality R4 > R2 takes place, then the critical point A2 (R2, 0) is a saddle, while
A1 (R1, 0) becomes a focus. The situation is more complicated when the inequalities R1 < R4 <
R2 hold, but in our attempts to capture the homoclinic trajectories we will rather focus upon
the case R4 < R1, as the only one leading to the localized compressed waves appearance. Before
we start to study the Hamiltonian case, let us pay attention to the fact that the inequalities (25),
together with the condition R4 < R1, pose the following restrictions on the invariant wave pack
velocity D:

βRν+3
1 < D2 <

√
σh−1Rµ+3

1 (29)

As we have mentioned above, it is rather impossible to chose a proper multiplier φ, whenever
τ �= 0, because the corresponding term in the RHS of the second equation of system (24)
introduces the dissipation. Yet, by proper choice of the parameters τ1 and τ2 in equation (20),
we can fulfil the relations τ � 1 and h = O(1), enabling to drop down the term proportional
to τ. For τ = 0 function φ can be written, e.g. in the form φ = C∆R−5, where C is an arbitrary
constant. The system (24) becomes Hamiltonian, if we choose φ in accordance with the above
formula and introduce new independent variable T, using the relation R∆φ d

dT = d
dω .

With such a choice of the multiplier, the Hamiltonian function is as follows:

H(R, Y ) =
∆2

σR4
Y 2 +

1
σR2

{
D6h +

2D2σRµ+3

µ + 1
− 2Eσ

µ + 2
Rµ+4

+
2σβ

(ν + 2)(ν + µ + 4)
Rν+µ+6 − 2D4hRE − 2D4hβR

ν2 + 3ν + 2

}
. (30)

To show that the closed loop does exist among the solutions of system (24), let us consider
one of the separatrices of the saddle point A1 (R1, 0), namely:

Y+(R) =

√
G̃(R)
F (R)

, (31)

where

G̃(R) = H (R1, 0) − H (R, 0) , F (R) =
∆2

R4σ
(32)

(note, that both equation (30) and (31), become identical with the corresponding equations
of the previous section as we put h = 0 and ν = µ). As it follows from the linear analysis
of system (24) in the critical point A1 (R1, 0), the curve Y+(R) forms with OR axis a positive
angle α:

α = arctan
√

R1
2∆1

−1
[
E − (ν + 3)(ν + 2)−1Rν+2

1

]
.

In virtue of the function G̃(R) features, arising from the formulae (30), (32), it should intersect
open set (R1, +∞) at least once. Let us denote the point of the first intersection by R3. Re-
peating the analysis from Section 2, we can show that the saddle separatrix Y+(R) and the OR
axis form the right angle in the point of intersection and the inequalities R3 > R2 > R1 take
place. So the following statement holds.
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Theorem 2. If ν > −2, R1 >
(
D4h/σ

)1/(µ+3) and D2 satisfies inequalities (29), then sys-
tem (24) possesses a one parameter family of periodic solutions, localized around the critical
point A2 (R2, 0) in a bounded set M. The boundary of this set is formed by the homoclinic
intersection of separatrices of the saddle point A1 (R1, 0) .

4 Conclusions

Two non-local models have been presented describing long waves propagation in the media with
internal structure. The main result obtained is that the hydrodynamic-type systems, accounting
for non-local effects, possess periodic and soliton-like travelling wave solutions. The presence of
the above solutions seems to be the direct consequence of the non-local effects, since any local
hydrodynamic-type model, i.e. the system of balance equations (1) closed by the functional state
equation p = Φ(ρ), does not possess them, when dΦ(ρ)/dρ is a growing function for positive ρ.
Numerous counter-examples (given e.g. in [5]) do not satisfy this condition and therefore deliver
merely a set of unstable travelling wave solutions.

In order to prove the existence of nonlinear wave patterns we used in this work combination
of symmetry reduction and qualitative analysis. Let us stress that a number of solutions with
very interesting applications cannot be integrated explicitly, and the role of qualitative analysis
is hardly to be overestimated in such situations. Very often they do enable to prove the existence
of solutions of specific kind. For example the soliton-like solutions could be extracted by regular
methods, providing that the system under consideration is either Hamiltonian, or close to the
Hamiltonian [6]. But the preliminary studies of system (5) show [7], that it is not Hamiltonian for
any physically justified values of the parameters. Nevertheless, the dynamic system, obtained
from (5) by group-theory factorization, occurs to be equivalent to the Hamiltonian one, and
therefore it is relatively easy to analyze. System (21), in turn, is a non-conservative system,
because of the presence of dissipative term proportional to τ in the third (governing) equation.
Therefore soliton-like solutions belonging to the family (22) appear when τ nullifies. Strictly
speaking, the passage τ → 0 is an improper procedure, but the results obtained in the last
section might serve as a starting point in looking for the waves patterns in the case when
0 < τ � 1 and an external force is present in the momentum equation. Analysis of the
relaxing hydrodynamic-type system, undertaken in our previous works, shows [8] that the spatial
inhomogeneity, associated with the presence of mass force, could compensate the dissipative
effects, making possible the wave patterns appearance.
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