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We give a short description of our own software for geometry and differential geometry and
its extensions [4,1–3,5–8] and apply it to the visualisation and animation of certain analytic
transformations between surfaces.

1 Introduction

The main purpose of our software is to visualise the classical results in differential geometry
on PC screens, plotters, printers or any other postscript device, but it also has extensions to
physics, chemistry, crystallography and the engineering sciences. To the best of our knowledge,
no other comparable, comprehensive software of this kind is available.

The software is open which means that its source files are accessible to the users, thus enabling
them to apply it in the solutions of their own problems. This makes it extendable and flexible,
and applicable to both teaching and research in many fields. In contrast to this, almost all
other available graphics packages are closed; in general, the area below the user interface is
inaccessible and consequently the software cannot be extended beyond the scope of solutions it
offers. The software uses OOP, object oriented programming, and its programming language is
PASCAL. The software is self-contained in the sense that no graphics package is needed other
than PASCAL.

The advantages of PASCAL are the hierarchy of objects and the polymorphy which is not
available in some OOP languages. In the hierarchy of objects, a successor inherits all the data,
in particular the methods and procedures, of its predecessors. Polymorphy means that virtual
methods can be declared, a virtual method can be rewritten with the same name in a successor,
and one may have more methods than one with the same name. The development of our software
could not have been achieved without OOP.

2 Spherical and pseudo-spherical surfaces of revolution

Let γ be a curve with a parametric representation �x(s) = (r(s), 0, h(s)) where s ∈ I ⊂ R is the
arc length along γ, and r(s) > 0 on the interval I. Furthermore let RS(γ) be the surface of
revolution generated by rotating γ about the x3-axis. Putting u1 = s and writing u2 for the
angle of rotation, we obtain the following parametric representation for RS(γ) on D = I×(0, 2π)
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Omitting the argument u1, we find that the first and second fundamental coefficients of
RS(γ) are given by g11 = (r′)2 + (h′)2 = 1, since u1 is the arc length along γ, g12 = 0, g22 = r2,
L11 = r′h′′ − r′′h′, L12 = 0 and L22 = rh′. So the Gaussian curvature
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Figure 1. Surfaces of revolution.

Since (r′)2 + (h′)2 = 1 implies r′r′′ + h′h′′ = 0, we obtain

K =
r′h′′h′ − r′′(h′)2

r
= −

(
(r′)2 + (h′)2

)
r′′

r
= −r′′

r
,

and consequently writing u = u1

r′′(u) + K(u)r(u) = 0. (2)

Surfaces of revolution with constant Gaussian curvature K > 0 or K < 0 are called spherical
or pseudo-spherical surfaces of revolution, respectively1.

First, we assume K = 0. Then r = c1u + c2 with constants c1 and c2. If we choose c1 = 0
then h′ = ±1 implies h = ±u + d with some constant d, and we obtain a circular cylinder. If
c1 �= 0 then (r′)2 + (h′)2 = 1 implies |c1| ≤ 1. For |c1| = 1, we have h′ ≡ 0, hence h ≡ const,
and we obtain a plane. For 0 < |c1| < 1 and a suitable choice of the coordinate system, we have
r = c1u and h = d1u for some constant d1 with c2

1 + d2
1 = 1, and we obtain a circular cone.

2.1 Spherical surfaces of revolution

We assume K > 0 and put K = 1/c2 for some constant c > 0. Then the general solution of the
differential equation (2) is r(u) = λ · cos (u/c + u0) and by a suitable choice of the arc length we
may assume r(u) = λ cos (u/c) with λ > 0. Now (r′)2 + (h′)2 = 1 implies

h(u) = ±
∫ √

1 − λ2

c2
sin2 u

c
du

and we may choose the upper sign without loss of generality. Thus the spherical surfaces of
revolution are given by parametric representations (1) with

r
(
u1

)
= λ cos

u1

c
and h

(
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=

∫ √
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c2
sin2 u1

c
du1,

where λ > 0, c = 1√
K

and K > 0, the integral for h is a so-called elliptic integral. We obtain
three different types of spherical surfaces of revolution corresponding to the cases λ = c, λ > c
or λ < c.

Case 1 λ = c. Then the surface has a parametric representation
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.

Hence the surface is a sphere with radius c and centre in the origin.
1Figures in colour will be available only in electronic version.
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Case 2 λ > c. The corresponding surfaces are called hyperbolic spherical surfaces of revolu-
tion. Now the integral for h only exists for values of u1 that satisfy

sin2 u1

c
≤ c2

λ2
, that is u1 ∈ Ik =

[
−c arcsin

c

λ
+ kπ, c arcsin

c

λ
+ kπ

]
for k = 0,±1,±2, . . . .

Every interval Ik defines a region of the surface. The radii of the circles of the u2-lines are
minimal at the end points of the intervals Ik and equal to r =

√
λ2 − c2, whereas the maximum

radius R = λ is attained in the middle of each region.
Case 3 λ < c. The corresponding surfaces are called elliptic spherical surfaces of revolution.

Now the integral for h exists for all u1 and the radii r of the circles of the u2-lines attain all
values r ≤ λ.

Figure 2. Spherical surfaces of revolution: c = 1, λ = 0.6, elliptic; c = λ = 1, spheres; c = 1, λ = 1.4,
hyperbolic.

2.2 Pseudo-spherical surfaces of revolution

Now we assume K < 0 and put K = −1/c2 for some constant c > 0. The general solution of
the differential equation (2) is

r(u) = C1 cosh
(u

c

)
+ C2 sinh

(u

c

)
with constants C1 and C2. (3)

Case 1 C1 = −C2 = λ �= 0. Then we obtain from (3) r(u) = λ exp (−u/c), and the surface
has a parametric representation with
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Such a surface is called parabolic pseudo-spherical surface of revolution. The integral for h exists
for |u1| > c log (|λ|/c).



Transformations between Surfaces with Animations 1499

Figure 3. Parabolic pseudo-spherical surfaces of revolution (λ = 1): c = 1; c = 1.5; c = 2.

Case 2 C2 = 0 and C1 = λ �= 0. Then the surface has a parametric representation with
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Such a surface is called hyperbolic pseudo-spherical surface of revolution. The integral for h is
an elliptic integral and exists for |u1| ≤ c ·Arsh(c/|λ|) = c log (c/|λ| + √

1 + c2/λ2). The radii r
of the circles of the u2-lines satisfy λ ≤ r ≤ √

λ2 + c2.

Figure 4. Hyperbolic pseudo-spherical surfaces of revolution (λ = 1): c = 1.2; c = 1.6; c = 2.

Case 3 C1 = 0 and C2 = λ �= 0. Then the surface has a parametric representation with

r
(
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)
= λ sinh

(
u1

c

)
and h

(
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=

∫ √
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c2
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(
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)
du1.

Such a surface is called elliptic pseudo-spherical surface of revolution. Since coshx ≥ 1 for all x,
we must have |λ| ≤ c. The integral for h is elliptic and exists for cosh (u1/c) ≤ c/|λ|. The radii r
of the circles of the u2-lines satisfy 0 ≤ r ≤ √

c2 − λ2.
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Figure 5. Elliptic pseudo-spherical surfaces of revolution (λ = 1): c = 1.35; c = 1.55; c = 1.75.

3 Isometric mappings of surfaces of revolution

Now we determine all surfaces of revolution that can be mapped isometrically onto a surface of
revolution with non-constant Gaussian curvature.

Since the first and second fundamental coefficients of surfaces of revolution S depend on the
parameter u1 only, the Gaussian curvature is constant along any u2-line of S. Furthermore
the Gaussian curvature of surfaces is invariant under isometric mappings. Since the Gaussian
curvature of the given surface of revolution S is not constant, the u2-lines of the surfaces of
revolution S∗ that are to be determined have to be mapped onto the u2-lines of S. Finally,
since isometric maps are conformal, the u1-lines of S∗ have to be mapped onto the u1-lines of S.
Let S and S∗ be given by parametric representations (1) and

�x
(
u∗i) =

(
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(
u∗1) cos u∗2, r∗

(
u∗1) sin u∗2, h∗(u∗1)),

where u1 and u∗1 are the arc lengths along the u1-lines of S and the u∗1-lines of S∗, respectively,
that is

(
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(
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(
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(
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(
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fundamental forms are
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Since the u1- and u2-lines of S correspond to the u∗1- and u∗2-lines of S∗, we must have

u∗1(u1, u2
)

= u∗1(u1
)

and u∗2(u1, u2
)

= u∗2(u2
)
.

The first fundamental coefficients of isometric surfaces must satisfy gik = g∗ik for i, k = 1, 2.
Therefore we obtain from (4)

du∗1 = ±du1 and
r
(
u1

)
r∗

(
u1

) = ±du∗2

du2
. (5)

First, the left-hand side of (5) implies u∗1 = ±u1 + c0 where c0 is a constant. If we choose the
same orientation of the u1 and u∗1-lines, we may assume u∗1 = u1. Then the right hand side
of (5) becomes
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)
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.
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Since the left-hand side of this identity only depends on u1 and the right hand side only on u2,
we must have

r∗
(
u1

)
= c · r(u1

)
and

du∗2

du2
= ±1

c
where c �= 0 is a constant.

This implies u∗2 = ±u2/c + d, where d is a constant. We may choose d = 0 and the upper sign,
since d corresponds to a certain rotation about the axis and the sign to a reflection. Thus we
obtain u∗1 = u1 and u∗2 = u2/c. Since u∗1 is the arc length along the u∗-lines, it follows that

h∗′(u∗1) =
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(
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√
1 − c2
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))2
.

Consequently every surface of revolution S∗ that can be mapped isometrically onto a given
surface of revolution S with non–constant Gaussian curvature is given by a parametric repre-
sentation
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If c = 1 then S∗ = S. A continuous change of c corresponds to a continuous deformation. For
a given surface of rotation there is a one parametric family of isometric surfaces of revolution.

Figure 6. An isometric deformation of a pseudo-sphere.
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