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Spinor representation of groupGL(4,R) on special spinor space is developed. Representation
space has a structure of the fiber space with the space of diagonal matrices as the base
and standard spinor space as typical fiber. Non-isometric motions of the space-time entail
spinor transformations which are represented by translation over fibering base in addition
to standard Spin(4,C) representation.

1 Introduction

Spinor representation of the group GL(4,R) is needed for correct description of the Fermi fields
on Riemann space, such as the space-time of general relativity. It is used for two purposes: to
define the connectivity and covariant derivative of spinor field and to define the Lie derivative.
Recent publications [1–3] have reminded of this problem. The important problem for definition of
Fermi fields on Riemann space is that transformation properties of Dirac equation correspond [4]
to Spin(3, 1) representation of Lorentz group SO(3, 1) only, not the full linear group GL(4,R).

Covariant derivative definition and field equations based on it can be defined by the field of
orthonormal basis – tetrad description of curve geometry. In such way the tetrad connectivi-
ty is a member of Lorentz group and generates the spinor connectivity as standard Spin(3, 1)
representation. Spinor representation of group GL(4,R) is needed for investigation of the spinor
field symmetry as realization of the space-time symmetry.

In the case when the space-time symmetry subgroup G is different from SO(3, 1), the sub-
group spinor representation of that symmetry cannot be realized as Spin(3, 1) subgroup and,
one needs the spinor representation of G. As example we can take the standard model of Uni-
verse and its G(6) group of symmetry. It contains the subgroup G(3) of isotropy – subgroup
of Lorentz group SO(3, 1), and subgroup G(3) of translations. The latter is not a part of the
Lorentz group and we can describe translation properties of spinor field (i.e. electron) through
spinor representation of group GL(4,R) only.

Here we give results of investigations in special construction for the spinor field on the space-
time of general relativity. This is an extension of our investigation [5] of spinor representation
for full linear group GL(4,R).

2 Standard construction on Riemann space

For each point of the space-time one constructs the orthonormal basis
k
eµ (x) such that scalar

products are

k
eµ(x)

m
eν(x)gµν = ηkm = diag (1,−1,−1,−1). (1)
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Each basis vector is represented by Dirac matrix:

k
e ⇒ γk, γ0 =

(
1 0
0 −1

)
, �γ =

(
0 �σ
−�σ 0

)
. (2)

Coordinate transformations deal with the coordinate index only:

k
eµ′(x′) =

∂xµ

∂xµ′
k
eµ(x)

and group of invariance for the basis is SO(3, 1). This group can be represented by transforma-
tions of the spinor field:

k
e′µ(x) = T k

m
m
eµ(x) ⇒ ψ′(x) = U(T )ψ(x), (3)

U = exp
(
i

4
Tmnσ

mn

)
, σnm =

i

2
(γnγm − γmγn). (4)

The main problem in spinor representation of basis transformations is in the existence of special

type of conjugacy for Dirac spinor: spinor ψ is conjugated to ψ =
(
ϕ
χ

)
if its components are

not conjugated only, but are additionally rearranged by the matrix γ0:

ψ = (ϕ∗ χ∗ ) γ0. (5)

Each transformation modifying that matrix deforms the norm of the spinor space and invariance
loses the physical sense.

Covariant derivative can be defined by means of SO(3, 1) representation only. The space-time

connectivity for basis
k
eµ(x+ dx) is defined by

k
eµ(x+ dx) =

k
eµ(x) + dxνωk

mν
m
eµ(x) (6)

This leads to the spinor connectivity

ψ(x+ dx) = ψ(x) +
i

4
dxνωk

mνηknσ
nmψ (7)

and the covariant derivative

∇µψ(x) = ∂µψ(x) +
i

4
ωk

mµηknσ
nmψ (8)

for spinor field.
This is typical approach to involve Fermi fields in general relativity, but it is inappropriate to

define the Lie derivative of spinor. Until one considers Lie derivative along Killing vector only,
one can keep to previous representation.

If it is needed to involve Lie derivative along non-Killing vector one has to use a corresponding
element of group GL(4,R) being outside the Lorentz group. One, may need such a Lie derivative,
for example, in the case of investigation of spinor field time dependence for non-static Universe.

3 Point-to-point transformation

We investigate properties of spinor field with respect to motion of the space-time

M : x→ y = m(x). (9)
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Each map m(x) of this motion generates transformation of coordinate basis

y = m(x) ⇒ Tµ
ν =

∂mµ(x)
∂xν

. (10)

When the motion belongs to neighborhood of identity, this transformation takes exponential
form

T = exp(m · t), (11)

where

tµν =
∂ζµ(x)
∂xν

(12)

and vector ζµ(x) determines the direction of motion.
Derivative of basis along motion is the Lie derivative

Lζ
k
eµ(x) = ζν(x)∂ν

k
eµ(x) +

k
eν(x)∂µζ

ν(x). (13)

It generates the transformation of basis

k
e(x+ τζ) =

k
e(x) + τLζ

k
e(x), (14)

which can be rewritten as

k
e(x+ τζ) =

k
e(x) + τζk

m
m
e(x). (15)

After integrating we obtain basis transformation as representation of group GL(4,R)

k
e(m(x)) = exp

(
mζk

m

)m
e(x). (16)

Only in the case of ζµ(x) being a Killing vector, this representation can be continued to the
spinor transformation. In general case this does not work and it is needed to extend the spinor
space.

3.1 Space of diagonal matrices

A transformation from neighborhood of identity can be represented as a product of two isomet-
rics V , U and dilatation

∆ =




δ0 0 0 0
0 δ1 0 0
0 0 δ2 0
0 0 0 δ3


 , T = V · ∆ · U. (17)

Both isometrics have spinor representation, but the dilatation has no, because it deforms spinor
conjugation. One has to extend the spinor space to represent the subgroup of dilatation.

The subgroup of dilatation is a noncompact Abelian group and has true representations as
translations in R

4.
Thus it turns out to be interesting to involve into consideration the space of diagonal matri-

ces Dm

Dm = {diag (d0, d1, d2, d3) : d0 · d1 · d2 · d3 �= 0} . (18)
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This space realizes representation of the dilatation subgroup ∆ which is extended to the repre-
sentation of group G(4,R) in such a way:

A point d of Dm is transformed by the element of group g to a symmetric matrix dg which
has the diagonal form d′. This diagonal matrix determines the reflex of d trough transformation
Tg(d) = d′ and determines also unique element ∆g of dilatation subgroup. Left isometrics Vg

is exactly the same as dg transformation to d′ and right isometrics Ug can by restored uniquely
trough

Ug = ∆−1
g V −1

g Tg. (19)

3.2 Spinor fiber space

Now we construct for each point d from space of diagonal matrices Dm the spinor space
Spin(4,C) with anticommutator

γnγm + γmγn = 2dmn,

dmn = diag (d0, d1, d2, d3), (γ0)2 = d0 (20)

and with conjugation

ψ = (ϕ∗ χ∗ )γ0. (21)

Each spinor space Spin(4, C) realizes spinor representation of isometric group SO(3, 1) for met-
rics dmn. All spinor spaces are isomorphic and can be attached to fiber space with base Dm.

Now non-isometric motion M : x → y = m(x), for each point x from space-time, which has
exponential form (11) is represented as product of two isometrics

Vg = exp(vm · vg), Ug = exp(um · ug) (22)

and dilatation

∆g = exp(dm · δg) (23)

as matrix exponent

Tg = exp(vm · vg) · exp(dm · δg) · exp(um · ug). (24)

The motion Tg is represented on fiber spinor space in three steps:
1. Right isometrics Ug in start point d

Ug : ψ(x; d) ⇒ exp(um · ug(x))ψ(x; d); (25)

2. Translation from start point d to end point d+ δg over the base of fiber spinor space and
to end point m(x) over space-time

∆g : ψ(x; d) ⇒ exp(um · ug(x))ψ(x; d+ δg); (26)

3. Left isometrics Vg in end point d+ δg

Vg : exp(um · ug(x))ψ(x; d+ δg) ⇒ exp(vm · vg(m(x))) exp(um · ug(x))ψ(x; d+ δg) (27)

for the translated spinor.
As result we have the representation

T : ψ(x; d) ⇒ ψg(m(x); d) = exp(vm · vg(m(x))) exp(um · ug(x))ψ(x; d+ δg), (28)

which preserves the spinor norm, if the measure function on the fibering base is translationally
invariant.
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4 Example: Lie transformation along time direction

As an example we consider the Lie transformation along time for standard model of Universe.
Metrics of space-time for this model can be written as

ds2 = dt2 −R2(t)dl2, (29)

where dl2 is the metrics of corresponding space. Transformation from t1 to t2 is dilatation with
matrix

T =
Rt(t2)
R(t1)

diag (0, 1, 1, 1) (30)

and is represented simply as translation through base of the spinor fiber space. Corresponding
Killing vector acts on the spinor field as derivative along direction (0, 1, 1, 1) over base Dm

Ltψ(d; t, x) =
∂

∂t
ψ(d; t, x) +

(
∂

∂d1
+

∂

∂d2
+

∂

∂d3

)
ψ(d; t, x). (31)

5 Conclusion

• We have developed the special spinor space which represents the full linear group GL(4,R).
It has a structure of the fiber space with the space of diagonal matrices as the base and
standard spinor space as typical fiber.

• Non-isometric motions of the space-time entail spinor transformations which are repre-
sented by translation over fibering base in addition to standard Spin(4,C) representation.

• Until we do not use the non-isometric motion, spinor fields without overlapping on the
base of spinor fiber space are independent. Moreover, each such field can be represented
as simple spinor space ψ(x) ⇒ ∫

ψ(x; d)d4d.

• Only if one uses the non-isometric motion of space-time, it is essential to consider the
fibering of the spinor space.
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