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We propose the symmetry reduction method of partial differential equations to the system
of differential equations with fewer number of independent variables. We also obtain genera-
lized sufficient conditions for the solution found by conditional symmetry method to be an
invariant one in classical sense.

1 Introduction

In recent years the symmetry method is often used for reduction of partial differential equations
to the equations with fewer number of independent variables and thus for construction of ex-
act solutions for different mathematical physics problems. To construct a corresponding ansatz
generators of classical Lie point transformations are used as well as operators of conditional
symmetry. In this connection the application of combination of conditional and generalized sym-
metry is fruitful as was shown in [1,2] on the examples of evolution equation in two-dimensional
case (see also [3]). In [4] Svirshchevskii proposed the symmetry reduction method based on the
invariance of linear ordinary differential equations (see also [5]). It is the symmetry explanation
of “nonlinear” separation of variables [6] for the evolution-type equations.

Here we propose an approach applicable for symmetry reduction of partial differential equa-
tions which are not restricted to evolution type ones. It can be used in multi-dimensional case.
This approach is the generalization of the method introduced in [4].

2 Generalized symmetry and reduction
of partial differential equations

Let us consider partial differential equation
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where x = (x1, x2, . . . , xn), u = u(x) ∈ Ck
(
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)
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k
denotes all partial derivatives of k-th

order. Replacing u by u + εw and then equating coefficients at ε in Taylor series expansion we
obtain linearized equation (1)

L(x, u, w) = 0. (2)

It has been proved that the following property is fulfilled in this case. If equation (1) admits
Lie–Bäcklund vector field Q = η
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∂u and u = f(x) is a solution of equation (1)

then
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is a solution of equation (2).
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This property is illustrated by the connection between the solutions of Liouville and Moutard
equations. It is well known that the Liouville equation

uxy = 2 expu (4)

is invariant with respect to the Lie group of transformations with the generator

Q1 = f(x)∂x + g(y)∂y − (f ′ + g′)∂u,

where f(x) and g(y) are arbitrary smooth functions. Then from the solution

u = ln
X ′Y ′

(X + Y )2

of Liouville equation we easily obtain the solution

u =
X ′

1

X ′ +
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Y ′ − 2
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X + Y

of the Moutard equation

wxy = 2
X ′Y ′

(X + Y )2
w

with potential V = 2 X′Y ′
(X+Y )2

, where X(x), Y (y) are arbitrary smooth functions of their argu-
ments, fX ′ = X1, gY ′ = Y1, by using (3).

This property can also be used for reduction of partial differential equations to system of
equations with smaller number of independent variables. For simplicity consider ordinary dif-
ferential equation

H
(
x, u, . . . , u

m′

)
= 0, (5)

where u
m′ denotes the derivative of u with respect to one variable x1 of m′-th order, and H are

a smooth function of its arguments. Suppose that Q is the operator of Lie–Bäcklund symmetry
of equation (5). Let

u = F (x, C1, . . . , Cm′), (6)

where F is a smooth function of variables x, C1, . . . , Cm′ , C1, . . . , Cm′ are arbitrary functions
of parametric variables x2, x3, . . . , xn, be a general solution of equation (5). Then operator Q
transforms solution (6) to the solution of linearized version of equation (5), i.e. the linear ho-
mogeneous ordinary differential equation. It means that Q maps the set of solutions (6) into a
m′-dimensional vector space M . Moreover, we proved that partial derivatives ∂F

∂Ci
, i = 1, m′ form

the basis of M provided that H, U and F are sufficiently smooth functions of their arguments.
In this connection the following statement holds.

Theorem 1. Let equation (5) be invariant with respect to the Lie–Bäcklund operator Q. Then
the ansatz

u = F (x, φ1, φ2, . . . , φm′), (7)

where φ1, φ2, . . . , φm′ depend on n−1 variables x2, x3, . . . , xn reduces partial differential equation
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)
= 0 (8)

to the system of k1 equations for unknown functions φ1, φ2, . . . , φm with n − 1 independent
variables and k1 ≤ m′.
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Taking into account the above-mentioned arguments we proved the theorem. It can be easily
generalized for φ1, φ2, . . . , φm′ depending on ωl(x), l = 1, n − 1, where ωl(x) are some functions
of variables x. Note that the case when equation (5) is linear ordinary differential equation and
η is the function of special type (evolution type) considered in [4].

We consider several examples illustrating the application of the theorem. Firstly consider
equation

ut = f(ux)uxx, (9)

where f(ux) is a smooth function of ux. Let us consider the equation (5) in the following form

uxx = u3
x. (10)

In accordance with our approach we study the invariance of the equation (10) with respect to
Lie–Bäcklund operator

K1 = (ut − f(ux)uxx)∂u. (11)

Function f(ux) is determined from the condition of invariance of the equation (10) with respect
to the operator (11). It has the form

f =
A

u3
x

+
B

u2
x

,

where A, B are arbitrary real constants. Then we proved that the equation (10) admits the
operators

K2 = uux∂u, K3 = h
(
u + u−1

x

)
∂u,

where h is arbitrary smooth function. Therefore the equation (10) is invariant with respect to
the group of Lie–Bäcklund transformations with infinitesimal operator α1K1 + α2K2 + α3K3,
where α1, α2, α3 are arbitrary real constants. From this it follows that the theorem can be used
for the equation

ut =
(

A

u3
x

+
B

u2
x

)
uxx + λuux + λ1h

(
u + u−1

x

)
, (12)

where λ, λ1 are arbitrary real constants. The ansatz corresponding to the equation (10) has the
form

u = φ2(t) −
√

φ1(t) − 2x, (13)

where φ1(t) and φ2(t) are unknown functions. The ansatz (13) reduces the equation (12) to the
system of ordinary differential equations

φ′
2 = A − λ + λ1h(φ2), −φ′

1 = 2(B + λφ2). (14)

For different h(φ2) we receive different solutions. Let h(φ2) = φ2. In this case the solution of
the system (14) is

φ2 = Ceλ1t − (A − λ)λ−1
1 , −φ1 = 2

(
B − (A − λ)λλ−1

1

)
t + 2λ−1

1 λCeλ1t − C1. (15)

Substituting (15) into (13) we obtain the solution

u = Ceλ1t − (A − λ)λ−1
1 −

√
2

(
(A − λ)λλ−1

1 − B
)
t − 2λ−1

1 λCeλ1t + C1 − 2x
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of equation (12). This solution cannot be obtained by using classical Lie method of point
symmetry.

Note that the ansatz (13) can be used also for reduction of equations obtained by commuting
of operators K1, K2, K3.

Next we show the application of the method to an equation associated with inverse scattering
problem. As we know the group-theoretical background of the inverse scattering problem method
was given for the first time in [7].

Namely we study the symmetry of the linear ordinary differential equation

uxx = f(t, x)u. (16)

where variable t play the role of parameter in this equation, with respect to the Lie–Bäcklund
operator

Q1 =
(
ut + uxxx − 3

uxxux

u
+ α(t)u

)
∂u, (17)

where α(t) is a function of t.
We have proved that the equation (16) admits the operator (17) if and only if f satisfies the

Korteweg–de Vries equation in the form

ft + fxxx − 6ffx = 0. (18)

This statement is valid for arbitrary smooth α(t). Thus if one can construct the general solution
of equation (16) for some solution f(t, x) of (18) then the corresponding ansatz will reduce the
partial differential equation

ut + uxxx − 3
uxxux

u
+ α(t)u = 0 (19)

to the system of two ordinary differential equations with independent variable t. We stress that
a solution f(t, x) should not necessarily vanish at the infinity.

To solve the Cauchy problem

u|t=t0 = g(x) (20)

for equation (19) one should construct the solution f = p(t, x) of equation (18) satisfying the
condition p(t0, x) = gxx

g and then to integrate the ordinary differential equation

uxx = p(t, x)u.

If we can construct the ansatz in this way then we reduce the Cauchy problem (20) for the
equation (19) to the Cauchy problem for the system of two ordinary differential equations.

In addition note that Theorem 1 helped us to generalize the theorem proved in [8] concerning
the sufficient conditions for the solution obtained by using conditional symmetry operators to
be an invariant solution in the classical sense. Namely consider involutive family of operators

Qa =
n∑

j=1

ξaj(x, u)∂xj + ηa(x, u)∂u, a = 1, m. (21)

Suppose that the equation (1) is conditionally invariant with respect to involutive family of ope-
rators (21) and corresponding ansatz reduces this equation to an ordinary differential equation
of k1-th order. Then the following statement holds.
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Theorem 2. Let equation (1) be invariant with respect to s-dimensional Lie algebra AGs and
conditionally invariant with respect to involutive family of operators {Qi}. If the system

n∑
l=1

ξl
i

∂u

∂xl
= ηi(x, u)

is also invariant under the algebra AGs and s ≥ k1 + 1, then conditionally invariant solution of
equation (1) with respect to involutive family of operators {Qi} is an invariant solution in the
classical Lie sense.

It is necessary to note that this theorem can be generalized to the case when the algebra
AGm contains Lie–Bäcklund operators too.

3 Conclusion

We showed that the symmetry of ordinary differential equations can be used for reduction of
partial differential equations to a system with fewer number of independent variables. It follows
from Theorem 1 that the linearity is not a necessary condition for this reduction. Thus the
restriction obtained in [4] on the dimension of vector space Wk: k ≤ 2p+1, where p is the order
of studied evolution equation, is not valid in this case. It is obvious that the suggested method
is applicable in a multi-dimensional case.

In addition note that this approach can be used in solving the problem of integrability of
a partial differential equations. It gives the possibility to reduce this problem to the problem of
integrability for an ordinary differential equation. We consider this method to be important in
studying quasi-exactly solvable systems.

We also obtained the generalized sufficient condition for the solution constructed by using
conditional symmetry to be an invariant one in classical sense.
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[4] Svirshchevskii S.R., Lie–Bäcklund symmetries of linear ODEs and generalised seperation of variables in
nonlinear equations, Phys. Lett. A, 1995, V.199, 344–348.

[5] Kamran N., Milson R. and Olver P.J., Invariant modules and the reduction of nonlinear partial differential
equations to dynamical systems, Adv. Math., 2000, V.156, 286–319.

[6] Galaktionov V.A., On new exact blow-up solutions for nonlinear heat conduction equations with source and
applications, Diff. Int. Eqns., 1990, V.3, 863–874.

[7] Fushchych W.I. and Nikitin A.G., Higher symmetries and exact solutions of linear and nonlinear Schrödinger
equation, J. Math. Phys., 1997, V.38, N 11, 5944–5959.

[8] Tsyfra I.M., Conditional symmetry reduction and invariant solutions of of nonlinear wave equations, in
Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics” (9–15 July,
2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and R.O. Popovych, Kyiv, Insitute of Mathematics, 2002,
V.43, Part 1, 229–233.


