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The conventional Lie group approach is extended successfully to give out the group ex-
planation to the new conditional similarity reductions obtained by modifying the Clarkson
and Kruskal’s (CK’s) direct method for the (2+1)-dimensional Korteweg—de Vries (KdV)
equation.

1 Introduction

As is well-known that the classical Lie group approach, the nonclassical Lie group approach, the
Clarkson and Kruskal’s (CK’s) direct method are three powerful methods in finding similarity
reductions for a given nonlinear partial differential equation (NPDE) [1-6]. In many cases, the
similarity reductions obtained by the classical Lie group approach can also be yielded by the
CK’s direct method; and those obtained by the CK’s direct method while not by the classical
Lie group approach can be reobtained by the nonclassical Lie group approach. There have been
several modifications of these three methods in the literature [7-12].

Three years ago, we for the first time proposed the modified CK’s direct method to construct
the so-called conditional similarity reductions of the (2+1)-dimensional KdV equation in the
integrable case [9]. We call a reduction conditional similarity reduction since one reduction field
need to satisfy more than one reduction equation. Since then, similar work has been carried
out on several other NPDEs including the nonintegrable (2+1)-dimensional KdV equation [10],
the Jimbo-Miwa (JM) equation [11] and the Boussinesq equation [12]. It is noticed that the
conditional similarity reductions obtained by means of the modified CK’s direct method cannot
be recovered by utilizing the classical or even the nonclassical Lie group approach in their present
forms. The very reason lies in the fact that the constrained equation introduced in the present
nonclassical Lie group approach does not offer an additional conditional reduction equation for
the reduction field. Consequently, in order to reobtain the conditional similarity reductions by
using the classical Lie group approach or the nonclassical Lie group approach, a conditional
equation which will lead to the additional reduction equation must be introduced. In Ref. [13],
all the conditional similarity reductions of the JM equation resulting from the modified CK’s
direct method were retrieved by introducing a conditional equation, the KP equation, to form
an equation system and then applying the classical Lie group approach to the system. Thus,
the whole group theoretical explanation is given of the conditional similarity reductions for the
JM equation. In fact, how to introduce a conditional equation so that the conditional similarity
reductions got by the modified CK’s direct method can also be yielded by the classical Lie group
approach and/or the nonclassical Lie group approach has not yet been precisely known.

The aim of this paper is to report the recent progress on the Lie group approach which
gives out the group explanation of the conditional similarity reduction solutions obtained by the
modified CK’s direct method. The modified CK’s direct method and the conditional similarity
reduction solutions for the (2+1)-dimensional KdV equation will be reviewed in the next section.
In Section 3, the conventional Lie group approach is developed further to give out the full group
explanation for the conditional similarity reduction solutions given in Section 2. The last section
is a short summary and discussion.
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2 Conditional similarity reduction solutions

In the traditional CK’s direct method, in order to find the similarity solutions of a general Nth
order n-dimensional nonlinear system,

n
Ey (xl,xg,...,xn,u,umi,ugjﬂj,...,umilm?”m?> =Fy=0, lej = N, (1)

]_
one seeks solutions of the kind v = U(z1, z2,...,2n, P(§1,82,...,&n—1)), where &, j =1,2,...,
n — 1 are all functions with respect to {z1,x2,...,z,}. For some types of models, the solution

u may commonly be simplified to the linear ansatz

u:a_‘_ﬁp(glvg%“'agnfl)a (2)
where o and 8 are both functions of {x1,z9,...,z,}. In general, it is known that the ansatz (2)

may not be valid for other types of models, say, the Harry—Dym equation [3]. Substituting (2)
into equation (1) gives out

L

L
Zrl(a7a$ia/67/8$p§$i7' . )E(§j7P7P£J7 ) = ZTZE =0. (3)
=1

=1

Since the similarity reduction function P satisfies only one reduction equation, equation (3)
becomes an (n — 1)-dimensional PDE G(&j, P, F;,...) = G(P) = 0, only for all the ratios of r;
being functions of {{1, &2, . .., &n—1}. Namely, r; = r;I'; should be satisfied for some fixed nonzero
rg, and I'; are functions of {&1,&2,...,&—1}-

In order to find the conditional similarity reductions of (1), we relax the condition that the
stmilarity reduction function P satisfies only one reduction equation as that P is allowed to
satisfy more than one reduction equation at the same time. Based on this idea, we make use of
the same reduction ansatz (2) and then separate the resulting equation (3) into m parts

m M
ZZAlkFl =0, M>L, (4)

k=11=1

m m
with the condition Y A =1, (I <L), >, Aix =0, (I > L), where F; for | > L may be some
k=1 k=1

suitable functions of P and its partial differential derivatives with respect to {&1,&2,...,&n—1}.
M

Then we can see that the reduction function P may satisfy m reduction equations > A;F; = 0,
I=1

(k=1,2,...,m). When applying this modified direct method, one must make sure that all the

ratios of Ay, are functions of {;} for the same k, while cannot be functions of {£1,&2,...,&n—1}
for the different k. The reason is that if the ratio of any two A, is a function of {&1,&a, ..., &n—1},
then they can be put into the same part of (4). The arbitrariness of m and the functions F;
for [ > L makes it a hard job to cover all the cases of the conditional similarity reductions.
Therefore, up to now, we have just considered the case m = 2 and F; =0 for [ > L. Obviously,
many more meaningful conditional similarity reductions may be found for m > 2 and/or for
Fy # 0 whenl > L.
Some types of the conditional similarity reductions of

Upt — Ugzay — AUgUpy — dUgptty =0, (5)
which is the potential form (v = uy) of the (2+1)-dimensional KdV equation

Vp — Vgay — 400y — 4vx8;10y =0.



254 X.Y. Tang and S.Y. Lou

have been discussed in detail via the modified CK’s direct method in [9]. Here, we will list the
general known conditional similarity solution of (5) which reads

1 —

u = lx—k—/ 2y — Ty + 0(w140 + Boy) + yuaony | dy + 6P, § =0z +o,
4y 4 Omy

where the function P = P(€,n) satisfies the conditional similarity reduction equations (i.e. (116)

and (117) of Ref. [9])

Peen + 4P Py + 714(§Pe — P) + 729 P + (7211 + 720)§ + f1 = 0,
P§€£+4P§2+W14(§P§—P)+BP§+w29P+(w2177+w20)§+f0=0,

with B = B(n), f1 = fi(n) and fo = fo(n) being arbitrary functions of . For the other functions

(0 = 0(t), o0 = o(y,t), n = n(y,t)) and constants (Y14, ¥20, V21, V20, W14, Wag, W21, W20), seven
possible selections were given in [9] which will be explicitly written down again in Table 1 later.

3 Group explanation of the conditional similarity
reduction solutions

In order to give out the whole group theoretical explanation of the conditional similarity reduc-
tions obtained via the modified CK’s direct method described in the last section, we have to
extend the present classical Lie group approach and the nonclassical Lie group approach.

Simply speaking, the extended classical and nonclassical conditional Lie group approaches
are realized if we introduce some constrained equations when solving the model equation and
then applying the standard group approach to the formed equation system. As a first attempt,
we worked on the JM equation [13] where the conditional similarity reductions yielded by the
modified CK’s direct method have been recovered totally. However, the constrained equation
in this case comes quite specifically so that it cannot be a good candidate for all the NPDEs in
observation. Consequently, a more systemic way should be established to find out a common
equation which can then be considered for a class of NPDEs. Starting from this standpoint,
a more general conditional equation for the integrable (2+1)-dimensional KdV equation is im-
ported when we try to give out the group explanation of the results [9] obtained via the modified
CK’s direct method, which read

Ugzr + Alu:r:py + AQU:vuy + Azug + A4uy + A5u§; + Agu + A7 =0, (6)

with the coefficients A;, (i = 1,2,...,7) being suitable functions with respect to the space-time
variables {z,y,t} to be determined later. Writing down the constrained equation (6) is based on
the fact that the orders of the differentiations and the nonlinearity of the conditional reductions
obtained by the modified CK’s direct method in [9] are not higher than those of the original
system (5). Like the conventional nonclassical Lie group approach, when using the extended
nonclassical Lie group approach, we have to utilize the following constraint condition

Xug + Yuy +Tuy — U =0, (7)

where X, Y, T, U of {z,y,t,u} are called the infinitesimals of the transformation functions
related to the infinitesimal transformations {z,y,t,u} — {z,y,t,u} +€e{X,Y, T, U} with € being
the group parameter, under which the model equation and the constrained equations should be
form invariant.

Ignoring the concrete calculations, we directly give out the whole group explanation in Tab-
le 1 where the first column is the selections corresponding to the known conditional similarity
solutions in Ref. [9], the second column is the solutions for the coefficients of the constrained
equation (6) and the last column is the concrete form of the related infinitesimal transformations.
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Table 1. Group explanation for the results obtained by the modified CK’s direct method.

Selections

Parameters

Infinitesimal Transformations

Y14 =c1,729 =c1 — 1

Y20 = c0, Y21 = —%(c1 + 1)

w14 = w9 = w21 = wz0 =0

0 = cot—1/(3+e1)

n= 762*23 —(1+~“1)/(3+F1)
c1
Fest™ (1+L1)/(3+C1) + 1 J_

€1
+cgt2/(3+cl )

o = o(y,t) arbitrary

A=Ay =Ay =As =A7; =0

Az = —02%(2C1n — B — 4cg)
+2c§chz
Ag = 77666292C2(201n — 4cq

—B) + 20*[(C1n — 2¢0)(C1n

—2¢co — B) — 4fo] + %c%cgcg

where C1 =14 ¢y, Cog =3+ ¢

X =—o¢t+ c 7 [eat™/C22 — 0, (Cry
70202(CrC1 7266t))]

y =+~ 1/C2 [,w

Cot + 2c6cg]

T = cztfl/CQ

Cy

U= 402 5 [c%CgBt 02 (2626602t — 65C2
Cq cz + C1y) +20%y? — 4¢3C1C2(c5C1
—2ct)y — SC%cgth(cscl — cgt) + 2042L
BCTC3] + 152t/ C2[C1(z — 1)
(555302 —y) + 2t(2a — cgcgczz — 2u)]
tegart—1/C2 4 Eﬁ(clg — 2Cq0¢t)
[e3Ca(c5C1 — 2¢6t) — C1y]

a = —462102 tl/c2[(1 +2¢1)t7 ! [ody

—Cs [ opdy — c%Cgt72/02 J oyBdy
+0(C1(e5c3C2 — y)t™ 1 — 2c2c6C2)]

Y14 = —3,729 = —4
Y20 = ¢0,v21 =1
w14 = w29 = w21 = w20 =0
0 = exp(cat)

n = (coy + 3t + cq)e” 22" —

c1

o = o(y, t) arbitrary

Al =Ay=Ay; =A5=A7; =0

A = 62(4n + 4cq, + B) — %
Ap = — 25 [-2c30%((n + 1)

4c2
(2n + 2¢1 + B) — 2fo)
+cac302(4n + 4c1 + B) — 3]

—ot — 2Ioy — caxexp(cat)
Y = 2coye®2t 4+ (2¢c4 + 2¢3t — z—g
T = exp(cat)

U= %1[201 — 3cg0o + oy (Bexp(2cat) + 41)]
7(%63 — cou + caga — at) exp(cat)

)Eczt

a= 7MU'(5C20 — o¢)dy + 2I0]
+exp(4c2t) J oy Bdy

where I = cay + c3t + ¢4 — chz—

Y14 = c1,729 =c¢1 — 1
Y20 = Y21 = w14 = w29 = w21 =0
0 = CQtfl/(3+C1)

—2
C. Y (—1— +
n77327c1t( 1-c1)/(3 C1)+UO

o=¢+ t2/(3+01)

[(3+ Cl)tnmt + 2(1 + c1)not]

__Q+en)y® ,—2(14c1)/(3+c1)
4cdes3(3+eq)?

&0 = €&o(t), m = no(t) arbitrary

Az = —62[2C1n’ — B]

+20202 Camoed~C1

4
Ag = 07[0177'(0171/

—4fo] + 411 2027707:
C —
— ey 2Camo 0t "1 [2C1n" — B]

— B) +4c3€
9—2C1

n' =n—mo, Cl—l+61
Co 34+ c

S

Aag
X = (gicf)t -5y <3+c1><1+c1)tn8t

<3 (34 c1)?t%noeenor — ot
(2+cy)(A+ey)ynge + (2+l‘12)1m0t1

A2 [ 2cZcg(3+eq)t cZeg
+ (3+01)tynottt]
4c303
y = 2890 4 3 A3 Cynopt
= CTht 2 2M0t

T =coA
U = U

__1
where A =t 3tc1

Y14 = —3,729 = —4, w20 = c3
Y20 = Y21 = w14 = w29 = w21 =0
0 = exp(cat)

n = cayexp(—2cat) + no

e 2cot
o= %(‘Mznm + nott)

22
+ 2203 exp(—4eat) — &o

Az = 602(4n — 4no — 2¢; 'not + B)

4
= [—canot(4n — 4no + B)

Ag = 0
2
4c3

ye —2cot
X = %(*ﬁnm + 4eanott

+nottt) + ot — caw exp(cat)
_ moenort+ieand,
4cged
Y = 2cay exp(czt) — o= ot exp(3eat)
T = exp(cat)

+2c3(n — no) B + 4c3n(n — 2no) U =Urv
o = €o(t), n = no(t) arbitrary +4c%(ng + c3& — fo) + T’gt] a = apy
(203,0-03041—0040441)y
714 = 1,729 =0 A=Ay =A4=A5=A7 =0 X = —0ix + 10302
t
_ [ 60—5602n0s — 02
Y21 = c2, Y20 = ¢3 Az = 6%(6n' + c1€ + B) — 2030, " 4 Ztt 70t Ctlzgt c180t9%
t
wig = w29 =c1 noe — 2030440, >n’ Yy =—0;" [(9”9 —302)y + not 6%
4
w21 = €4, w20 = C5 Ag = &-[9n'2 —afo +3(cié+ B)y' | T =6
_ 23 ~
n=0"30ty+no +4(can + c5)€) + $0%0, 201’ v=uy
_ tt 564 ’ 19590—21p,.2 _ 0044567 2292
o (929t01 .03 ) + o (0ren” + 20¢mot) + 7076, “[0ng, a= e [ Bdy + WMG (567

o = &o(t) arbitrary while
no = no(t) and 6 = 6(t) are

given by equations (8) and (9).

—(6n" + c1£ + B)0sn’]
—1050; Yo [6n + c1€ + B

4 t
where n' =1 — no

—20440) + 0%(044:0¢ — Gtt)]
m[fmtt(f)nm — c10t€0)
—07 (c10€0; — 4c10+€0 + 50m04)]

Y14 = €3,729 = €2,721 = C5

wig = c1 +¢2,720 = C6
w29 = C1,w20 = C4

c5(c1—c2)

w21 =7 = =

As = 4A1, A5 =4, Ag =0

3

_ 007t
Al = by
Az = 0(3ca0
3 b292"2{ c1m1tm20(3c20t

+2c1 b8"7293> — ea(ez — 2¢1)n'n207

boco(2babyt+b3be)

X = —bibotP2 7 1g — g4, —
c1bst
th?‘ 2 2
Y = [bsbey — 2c2babyb?t — cabzbgb?]
T = bltb2
U = Uyr
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2
_c1(egt2eica—3cic3) 2 4 2 ’ _ c2y _
e +ciea0%Eoins + c1c20160(n'4nat & = T eabrbg AT [c1b5((3b2 + 1)520 Eott)
60 _ boy2(3bo+1
0=01t"2, o= -Ttoyten | +n30%(cao + c1&0 — csn’ + B)) Feabat™b6 (2bybyt + bybg)] — 22U 32 T)
c16 8cqb31302
_ _ _3-5b _.2 4 _ ’ bo B
n=mn2y+m = 2eg03eb6 Y cieanz0®nai(éo — &) 4+ c1n'n26 t ey, 2T J Bdy
2b5b byttt
H{—p T+ —3#} (2¢10%n2,bg — c2041) + cIn50°
c1esbabg t’6
by = Alcl(cf’i_cz)g (bg(c1€ + B) + ca(c3&o — c28))}
cpeg—bejegtes
3 . ., ’7
bs = 5by + 1, bg = 2bo + 1 A4:%"22”2t”)
ban3
b7 = cacgba — cge1bs A7 = Aviz
o = £o(t) arbitrary where n/ =n1 — 7, bg = c3 — ca
2
7 Y14 = Y29 = w29 = C1 Ay =4A1,A5 =4,A6 =0 X = -6tz — Lot + ﬁ(%lcﬁﬁng +3c162
1
04 0
w14 = 2¢1, w20 = €4,w21 = C7 Al = — CIQt +630,m2(ct + 2¢7)) + #
’ 0(nyut _
Y21 = ¢5,720 = C6 Az :23C139M2 (27c167 7;493?72 Y = - (n”,,?z me), T=0, U = Uvn
n=mn2y+m (2¢760¢ + c70¢ + c1c50°12))
_ 6 3m1¢ | g2 _ 4 3 2
o= —tzy+& =52t +0°(B — c1€o + 3c1§) a = —45-2[010°n2(3c1cg — 2¢] — 4er)
10 n2 24 205
. 63
&0 = £o(t) arbitrary, n1 = n1 (%) +% +3(ca — c1)07 — 4c1050%n3] + 40134"12
1037 (c1 12603436
n2 = n2(t) and 6 = 0(¢) are Ay = *% [—m1¢0¢ + c1m20% (c3£00%n2 + Eo¢)
L1120t
. c167n1+ 2 04
determined by Egs. (10)—(12) +W +(c1 + €2)0:0<E0m2] + 1c,62 J Bdy.
A7 = Ayry, wheren’ =m1 —n

Note. The concrete forms of Urn, arn, Urv, arv, Uv, Uvi, Avir, Uvit, Aviiz and equations (8)—(12) are all given

out in the Appendix.

Hence, the full group theoretical explanation is given out for all the conditional similarity
reductions of the integrable (2+1)-dimensional KdV equation obtained by the modified CK’s
direct method in Ref. [9]. It is worth pointing out that the coefficients of the conditional equation
used in giving out the group explanation of the results resulting from the modified CK’s direct
method are permitted to be functions with respect to the space-time arguments. In the case
that all the coefficients in this added equation are fixed to be constants, we are still able to find
many conditional symmetry reductions by utilizing the extended classical and nonclassical Lie
group approaches [14] which are definitely recoverable by the modified direct method though
the related work has not yet been carried out.

4 Summary and discussions

By extending both the CK’s direct method and the Lie group approach, we can obtain the
conditional similarity reductions. The crucial point for this kind of reduction is that the one
reduction field of a given NPDE needs to satisfy more than one reduction equation. From the
detailed description in the last two sections, one can notice much freedom or arbitrariness in
both the modified CK’s direct method and the extended Lie group approach. For the modified
CK’s direct method, we need to separate the resulting equation (3). Obviously, the division
is quite arbitrary. Moreover, the values of F; for [ > L can be set arbitrarily. While for the
extended Lie group approach, the choice of the constrained equation is rather arbitrary. Many
different useful results will be generated with different selections of the conditional equations.
Anyhow, we do believe that the conditional similarity reductions obtained from the modified
CK’s direct method can definitely be reobtained from the extended Lie group approach and vice
versa through ascertaining or balancing the arbitrariness between these two methods.
Furthermore, on the other hand, one can also see that the constrained equations introduced
in the extended Lie group approach have little relation with the model equation under inves-
tigation. However, as for the nonintegrable JM equation, the conditional equation forms an
integrable system with the JM equation. Therefore, probably we can decrease the arbitrariness
by considering a constrained equation which has some possible relation with the studied equa-
tion especially for the nonintegrable models. All in all, the search of a method to introduce
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a constrained equation for the model equation into the extended classical and nonclassical Lie
group approaches is still in progress.

Appendix
T 3 2 1 2 3 4 _
2019 att + 461 +cq 09t O + 4(9,5019 Oue + | c1c1 261 Beg | 07 =0, (8)

(4c460:600, — 20402 + 4010263)770 + 6%0,c1m04
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92
—3¢10%n2 (& — 38)] — 12217;2 [(4cr + 110%)77/ +3c1(B — c1éo + 3¢18)]
4,1 5

0
g[@&+4w+1%@#+3qua—q@+3q@] 0

n [esn (me — c160°m21))

9 _ 202 + 92 2
+ 3016’2772(065 +cs5én + fl)] + (m 237252 771t’
2

Uyt = 40 —— (50 + c1120°) (31201 + c1m30%y + Omie) — 1m20° (csm + c6) + O + Oy(u — @)

2

v _ _ _ e 3 _ _
+4C1 [crme(e18 — e3€o) — 40 (cs — crm)] 40117%93[019 n2(28ot — 36:) — 20111

(c1m202 + 36;)y?
12¢36°

— 10°12(3c36; — 8¢50°m2) — 3(co — 3¢1)07] — ﬁ{fﬂc%@%%@% —ch)

+0:0°m2(B + (c1 + ¢2)€0)] + [4(ct + 2¢7)0%0ms

+ 3c3es0®ni o + 3mbi(ca — 9e1) — 2¢10°03(9c10; — 3cilor — 670y + desm)
+ 3019t95772((61 + ¢2)&o + 3c3éo + B) + 91 6; 92772((01 +c2)é + B)
+ 0,03 12[c3 (18€0; — 270; — 10m1) + 1m1(3c1c3 — 8er)]}.
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