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Generalizations of the classical Darboux theorem are established for pseudo–differential scat-

tering operators of the form L =
n∑

i=0

uiDi + qMDr�. Iteration of the simplest binary

Darboux-like transformations (BDT) leads to a gauge transformed operator with coeffi-
cients given by Grammian-type formulas involving a set of eigenfunctions of an operator L
and adjoint eigenfunctions (eigenfunctions of the transposed operator Lτ ). Nonlinear inte-
grable partial differential equations are associated with the scattering operator L which arise
as a symmetry reduction of the matrix KP hierarchy. With a suitable linear time evolution
for the eigenfunctions the binary Darboux-like transformation is used to obtain solutions of
the integrable equations in terms of Grammian-type determinants.

1 Introduction

Since the mid-1970s, Darboux transformations (DTs) have been shown to be a powerful tool
for studying of the nonlinear integrable systems of soliton theory. Darboux’s original result [1]
is a transformation of the Schrödinger equation fxx + uf = λf with different potentials. With
a first eigenfunction for a potential u given, it can be used to map all other eigenfunctions to new
eigenfunctions for a Schrödinger operator with a modified potential. Crum [2] considered the
iteration of the DT, when a collection of eigenfunctions is given, and Crum’s formulae correspond
to compact Wronskian representations of the n-soliton solutions of the KdV [3].

Generalizations of these ideas for other spectral equations and their associated soliton systems
have been successfully applied to a variety of systems. An excellent overview summarizing vari-
ous forms of DTs and their applications in soliton theory is the book [3] by Matveev and Salle.

We show that not only differential Lax operators but also pseudo-differential scattering prob-
lems may be considered. Our aim is to apply the BDT to Lax operators of the form

L =
n∑

i=0

uiDi + qMD−1r� (1)

(where q = (q1, . . . , ql), r = (r1, . . . , rl), M is (l× l)-matrix of constants) and obtain Grammian
type solution formulas for the associated nonlinear evolution equations.

Scattering operators of the class (1) were encountered in the context of reductions of the KP
hierarchy [4–12], which generalizes a reduction concept originally used to reduce soliton systems
in 1 + 1 dimensions to finite dimensional equations [13–15].

In Section 2 we briefly review the essentials of pseudo-differential symbols to be used for
the description of the (constrained) KP hierarchy. We review the fact that for each pair of
eigenfunctions ϕ and adjoint eigenfunctions ψ (eigenfunctions of the transposed operator) the
squared eigenfunction can be integrated to a potential Ω[ψ,ϕ] satisfying Ωx[ψ,ϕ] = ψ�ϕ and
a corresponding time evolution [10,16]. With these potentials a proper spectral problem can be
formulated for pseudo-differential operators of the form (1).
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In Section 3 general formulation for the BDT for Lax pairs is presented in terms of pseudo-
differential symbols. The resulting Lax pairs are characterized by a gauge operator. Also we
show that the BDT will leave the class of operators (1) invariant, if the triggering eigenfunctions
are solutions of a spectral problem involving the potential associated with eigenfunctions and
adjoint eigenfunctions. This, in combinations with the result on the temporal aspects of the
BDTs, provides an efficient tool to generate exact solutions of the nonlinear equations associated
with operators of the form (1).

2 The algebra ζ of the pseudo-differential operators.
Integrable hierarchies in 2 + 1 and 1 + 1 dimensions

We consider the algebra

ζ =

{∑
i�∞

ui(x)Di

}
, (2)

of pseudo-differential operators of a “space” variable x ∈ R with coefficients ui being (in general
case) (N × N)-matrix-valued functions of x. For positive powers m ∈ Z+ of the differential
operator D, the algebraic multiplication with a multiplication operator represented by a function
u = u(x) is given by the usual Leibnitz rule

Dmu :=
∑
j≥0

(
m
j

)
∂ju

∂xj
Dm−j ,

(
m
j

)
=
m(m− 1) · · · (m− j + 1)

j!
, 0! = 1

with the same definition for negative powers, so that in particular D−1u :=
∑
j≥0

(−1)ju(j)D−1−j ,

we obtain a well defined associative algebraic structure on ζ (2).
The integrable scalar KP hierarchy can be formulated through linear system [14]

ftn = Bn{f}, gtn = −Bτ
n{g}, n ∈ N, t1 := x, t2 := y, t3 := t, . . . (3)

with an infinite hierarchy of operators Bn := (Ln
KP)+, where subscript + denotes the projection

of the powers of the micro-differential Lax operator

L := LKP = D +
∑
i≥1

UiD−1 (4)

onto its differential part and Bτ
n is a transposed operator. The first of the operators Bn are

computed as

B1 = D, B2 = D2 + 2U1, B3 = D3 + 3U1D + 3U1x + U2.

The Lax equation and the implying compatibility conditions of (3) are as follow:

Ltn = [Bn, L], n ∈ N, (5)
Bn,tk −Bk,tn + [Bn, Bk] = 0. (6)

They yield the field equations along with differential relations for the fields Ui such as

U2 = −1
2
ux +

1
2
∂−1

x uy,

U3 =
1
4
uxx − 1

2
uy − 1

2
u2 +

1
4
∂−2

x uyy, ∂−1
x f :=

∫ x

f(s) ds,
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where the leading coefficient u := U1 plays a distinguished role, since it satisfies the KP equa-
tion (9) (n = 2, k = 3 in the (6)) and its higher flows. Consequently all equations of this
hierarchy can be expressed via the single field u := U1.

We will refer to solutions of (3) as eigenfunctions and adjoint eigenfunctions respectively.
It has been observed that the product qr of an eigenfunction q and an adjoint eigenfunction r

represents a conserved covariant of the KP hierarchy. Hence, one may impose constraints on the
KP flows by expressing the dynamical field u via qr [4,5,8,9]. In terms of the Lax operator (4)
these constraints are characterized by the requirement that the negative differential orders of
a power Lk have the specific form(

Lk
)
− = qD−1r,

or, in general,

(
Lk
)
− =

m∑
i=1

qiD−1ri := qD−1r�, (7)

where m pairs of (adjoint) eigenfunctions are considered [6,7]. For given k this constraint leaves
the coefficients u := U1, U2, . . . , Uk−1 in (4) and qi, ri, i = 1,m as independent fields, whereas
Uk, . . . , Uk+1, . . . become differential expressions of these functions. One may replace L by the
new Lax operator

Lk-cKP := Lk = Dk + kuDk−2 +
k−3∑
i=0

uiDi + qD−1r�, (8)

where u0, . . . , uk−3 are differential expressions of u, U2, . . . , Uk−1. Thus the fields u0, . . . , uk−3, u
may be regarded as new independent fields related to u = U1, U2, . . . , Uk−1 by a coordinate
transformation. The constraints (7) may be regarded as multi-component symmetry reductions
of the KP hierarchy (5)–(6), since

utk = resLtk = res
[(
Lk
)
+
, L
]

= res
(
Lk
)
x
, res

(∑
i�∞

aiDi

)
:= a−1,

so that (7) implies the relation [6, 7]

utk =
(
qr�)

x

between the k-th flow of the KP hierarchy and the symmetry generated by square eigenfunctions.

Remark 1. If q = (q1, . . . , ql) are eigenfunctions then the product qM with a constant (l× l)-
matrix M is a vector of the eigenfunctions for KP hierarchy (5)–(6) too.

Remark 2. If we eliminate Ui, i ≥ 2 from (5), the remaining equations for the function u := U1

in (6) represent the (2 + 1)-dimensional KP equation

4ut3 = uxxx + 12uux + 3∂−1
x ut2t2 (9)

and its higher versions.

Remark 3. The so-called “k-constrained KP (k-cKP) hierarchy” (scalar) is the ordinary KP
hierarchy (5)–(6) restricted to a pseudo-differential operator Lk-cKP of the form (8)

L := Lk = Dk +
k−2∑
i=0

uiDi + qD−1r�, uk−2 = ku,

Ltn = [Bn, L], Bn :=
(
L

n
k
)
+
, n = 2, 3, . . . ,
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where ui, q = (q1, . . . , ql), r = (r1, . . . , rl) are all functions of x := t1 and higher time evolution
variables t2 := y, t3 = t, . . .. In particular, the constraints

ux =
(
qMr�)

x
, uy =

(
qMr�)

x
and ut =

(
qMr�)

x
,

are known to produce vector versions of (1 + 1)-dimensional of the AKNS (k = 1), the Yajima–
Oikawa (k = 2) and the Melnikov hierarchy (k = 3), respectively [6, 7].

3 BDT for the (N × N)-matrix cKP hierarchy

Theorem 1. Let ϕ, ψ be (N ×K) matrix solutions of the scattering problem

n∑
i=0

uiϕ
(i) + qM0Ω[r, ϕ] := L{ϕ} = ϕΛ,

and the transposed scattering problem

n∑
i=0

(−1)i
(
u�i ψ

)(i) − rM�
0 Ω[q, ψ] := Lτ{ψ} = ψΛ̃,

where Λ, Λ̃ are constant spectral matrices and Ω[r, ϕ], Ω[q, ψ] are functions satisfying Ωx[r, ϕ] =
r�ϕ, Ωx[q, ψ] = q�ψ. Then

1. Let f be a solution of the spectral problem
n∑

i=0
uif

(i) + qM0Ω[r, f ] := L{f} = f Λ̂ with

some constant spectral matrix Λ̂ and functions Ωx[r, f ] = r�f .
Then F := W{f} = f − ΦΩ[ψ, f ] satisfies the spectral problem

n∑
i=0

ûiF
(i) + ΦMΩ[Ψ, F ] + q̂M0Ω[r̂, F ] = F Λ̂, (10)

where Ω[Ψ, F ] and Ω[r̂, F ] are functions satisfying Ωx[Ψ, F ] = Ψ�F and Ωx[r̂, F ] = r̂�F .
2. The gauge transformed operator L̂ := WLW−1 with W = I − ϕ(C + Ω[ψ,ϕ])−1D−1ψ�,

where C is a constant (K ×K) matrix, has the form

L̂ =
n∑

i=0

ûiDi + ΦMD−1Ψ� + q̂M0D−1r̂�, (11)

with M = CΛ − Λ̃�C, Φ = ϕ(C + Ω[ψ,ϕ])−1,Ψ� = (C + Ω[ψ,ϕ])−1ψ�, q̂ = q − ΦΩ[ψ, q],
r̂ = r − ΨΩ[ϕ, r]. The coefficients ûi, i = 0, n can be expressed in the form ûn = un, ûi =
ui + Pi(ui+1, . . . , un, ϕ, ψ) with suitable differential expressions Pi of the indicated arguments.

3. If we have a Lax equation Lt = [M,L](:= ML−LM), M =
m∑

i=0
viDi and ϕ, ψ are solutions

of the evolution equations

ϕt = M{ϕ}, ψt = −M τ{ψ} (12)

then BDT triggered by ϕ and ψ will map any eigenfunction f satisfying both equations

ft = M{f}, L{f} = f Λ̂ (13)

to a new eigenfunction F for the transformed Lax pair L̂ (11), M̂ = −W (∂t −M)W−1 + ∂t,
which satisfies both the new evolution equations Ft = M̂{F} as well as the new spectral problem
L̂{F} = F Λ̂ (10).
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Proof. 1. Let L̂ := WLW−1 and L{f} = f Λ̂ then F := W{f} = f − ΦΩ[r, f ] satisfies

L̂{F} := WLW−1{W{f}} = WL{f} = W{f Λ̂} = W{f}Λ̂ = F Λ̂,

and an explicit form of the operator L̂ is given in the second part of the Theorem 1.
2. For proving the second part of the Theorem 1 we use helpful formulas

1) Ψ�Φ = (C + Ω[ψ,ϕ])−1ψ�ϕ(C + Ω[ψ,ϕ])−1 = [(C + Ω[ψ,ϕ])−1]x
⇒ Ω[Ψ,Φ] := −(C + Ω[ψ,ϕ])−1, (14)

2) Ψ�F = (C + Ω[ψ,ϕ])−1ψ�[f − ϕ(C + Ω[ψ,ϕ])−1Ω[ψ, f ]] = [(C + Ω[ψ,ϕ])−1Ω[ψ, f ]]x
⇒ Ω[Ψ, F ] := −(C + Ω[ψ,ϕ])−1Ω[ψ, f ], (15)

3) (I + ϕD−1Ψ�){F} := F + ϕΩ[Ψ, F ] := W{f} + ϕ(C + Ω[ψ,ϕ])−1Ω[ψ, f ]
= f − ΦΩ[ψ, f ] + ΦΩ[ψ, f ]] = f

⇒W−1 = I + ϕD−1Ψ� := I + ϕΩ[Ψ, ·] (16)

and W−1 (16) is the inverse operator to W = I − ΦD−1ψ� := I − ΦΩ[ψ, ·].
Analogously to the statement of part 1 of Theorem 1 we prove the next statement.
4) Let g be a solution of the spectral problem Lτ{g} = g

˜̂Λ with some constant spectral

matrix ˜̂Λ
n∑

i=0

(−1)i
(
u�i g

)(i) − rM�
0 Ω[q, g] = g

˜̂Λ (17)

and functions Ωx[q, g] = q�g.
Then

G := W−1,τ{g} = (W τ )−1{g} =
(
I − ΨD−1ϕ�){g} = g − ΨΩ[ϕ, g]

satisfies the spectral problem

L̂τ{G} = G
˜̂Λ, L̂τ := W−1,τLτW τ = (L̂)τ . (18)

5) G�F = [g� − Ω[g, ϕ](C + Ω[ψ,ϕ])−1ψ�][f − ϕ(C + Ω[ψ,ϕ])−1Ω[ψ, f ]]

= g�f − g�ϕ(C + Ω[ψ,ϕ])−1Ω[ψ, f ] − Ω[g, ϕ](C + Ω[ψ,ϕ])−1ψ�f

+ Ω[g, ϕ](C + Ω[ψ,ϕ])−1Ω[ψ, f ](C + Ω[ψ,ϕ])−1ψ�f

= [Ω[g, f ] − Ω[g, ϕ](C + Ω[ψ,ϕ])−1Ω[ψ, f ]]x
⇒ Ω[G,F ] := Ω[g, f ] − Ω[g, ϕ](C + Ω[ψ,ϕ])−1Ω[ψ, f ]. (19)

6) For functions hi, i = 1, 4 and the differential operator A ∈ ζ+ next formulas hold (see
e.g. [16, 17])

Ah1D−1h2 =
(
Ah1D−1h2

)
+

+A{h1}D−1h2, (20)

h1D−1h2A =
(
h1D−1h2A

)
+

+ h1D−1[Aτ{h2}]τ , (21)

h1D−1h2h3D−1h4 = h1Ω[h�2 , h3]D−1h4 − h1D−1Ω[h�2 , h3]h4, (22)

and for the operator

L =
n∑

i=0

uiDi + qM0D−1r� := L+ + qM0D−1r�,
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using formulas (16), (20), (21) by direct calculations we obtain

L→WLW−1 =
(
I − ΦD−1ψ�)(L+ + qM0D−1r�)(I + ϕD−1Ψ�)

=
(
L− ΦD−1ψ�L

)(
I + ϕD−1Ψ�) = L+ LϕD−1Ψ� − ΦD−1ψ�L

− ΦD−1ψ�LϕD−1Ψ� = L+ + qM0D−1r� + L+ϕD−1Ψ�

+ qM0D−1r�ϕD−1Ψ� − ΦD−1ψ�L+ − ΦD−1ψ�qM0D−1r�

− ΦD−1ψ�L+ϕD−1Ψ� − ΦD−1ψ�qM0D−1r�ϕD−1Ψ�

= L+ +
(
L+ϕD−1Ψ�)

+
− (ΦD−1ψ�L+

)
+
− (ΦD−1ψ�L+ϕD−1Ψ�)

+

+ qM0D−1r� + L+{ϕ}D−1Ψ� + qM0D−1r�ϕD−1Ψ� − ΦD−1(Lτ
+{ψ})�

− ΦD−1ψ�qM0D−1r� − (ΦD−1ψ�L+ϕD−1Ψ�)
−

− ΦD−1ψ�qM0D−1r�ϕD−1Ψ� = L̂+ + L̂−,

where

L̂+ = L+ +
(
L+ϕD−1Ψ�)

+
− (ΦD−1ψ�L+

)
+
− (ΦD−1ψ�L+ϕD−1Ψ�)

+

:= L+ + U+1 − U+2 − U+3 =
n∑

i=0

ûiDi, ûn = un. (23)

We obtain the exact form of the differential operators U1+, U2+, U3+ after using the Leibnitz
rule for a composition of pseudo-differential symbols. These operators are obtained in [16] in
explicit forms.

The integral part L̂− of the operator L̂ may be constructed after long transformation using
formulas (20)–(22) and the definition of the functions Φ and Ψ.

As a result we obtain

L̂− = (L{ϕ} − ΦΩ[ψ,L{ϕ}])D−1Ψ� − ΦD−1(Lτ{ψ} − ΨΩ[ϕ,Lτ{ψ}])� + qM0D−1r�

− qM0D−1(ΨΩ[ϕ, r])� − ΦΩ[ψ, q]M0D−1r� + ΦΩ[ψ, q]M0D−1(ΨΩ[ϕ, r])�.

From the formulas

Ω[ψ,L{ϕ}] = Ω[ψ,ϕΛ] = Ω[ψ,ϕ]Λ, Ω[ϕ,Lτ{ψ}] = Ω[ϕ,ψΛ̃] = Ω[ϕ,ψ]Λ̃ = (Λ̃�Ω[ϕ,ψ])�

and the definition of the functions

Φ := ϕ(C + Ω[ψ,ϕ])−1, Ψ := ψ
(
C� + Ω[ϕ,ψ]

)−1

it follows

L̂− = Φ
(
CΛ − Λ̃�C

)D−1Ψ� +
(
q − ΦΩ[ψ, q]

)D−1
(
r − ΨΩ[ϕ, r]

)�
, (24)

thus the gauge transformed operator L̂ := L̂+ + L̂− (23), (24) has the form (11) and F solves
the new spectral problem (10) with the potentials Ω[Ψ, F ] (15) and

Ω[r̂, F ] = Ω[r, f ] − Ω[r̂, ϕ](C + Ω[ψ,ϕ])−1Ω[ψ, f ], Ωx[r̂, F ] = r̂�F. (25)

Corollary 1. 1. From formulas (17)–(18) we see that function G = W−1,τ{g} solves the new
adjoint spectral problem

L̂τ{G} :=
n∑

i=0

(−1)i
(
û�i G

)(i) − ΨMΩ[Φ, G] − r̂M0Ω[q̂, G] = G
˜̂Λ
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with the potentials Ω[Φ, G], Ω[q̂, G], which can be calculated similarly to formulas (14)–(15),
(24):

Ωx[Φ, G] := Φ�G =
[(
C� + Ω[ϕ,ψ]

)−1Ω[ϕ, g]
]
x

⇒ Ω[Φ, G] =
(
C� + Ω[ϕ,ψ]

)−1Ω[ϕ, g], (26)

Ω[q̂, G] = Ω[q, g] − Ω[q, ψ]
(
C� + Ω[ϕ,ψ]

)−1Ω[ϕ, g]. (27)

2. The functions F , G are integrated in the potential Ω[G,F ] according to formula (19).
3. Let us have a differential operator M ∈ ζ+. Suppose that equations (12)–(13) hold and the

adjoint eigenfunction g satisfies the linear evolution equation

gt = −M τ{g}, (28)

then F , G solve the new linear evolution systems

Ft = M̂{F}, Gt = −M̂ τ{G}, (29)

where M̂ = −W (∂t −M)W−1 + ∂t =
m∑

i=0
v̂iDi.

A proof of this fact and exact formulas for the coefficients v̂i, i = 0,m− 1; v̂m = vm can
be found in [16]. From the compatibility conditions Lt = [M,L], Lτ

t = [Lτ ,M τ ] for the linear

systems L{f} = f Λ̂, ft = M{f} and Lτ{g} = g
˜̂Λ, gt = −M τ{f} respectively compatibility

conditions for the new linear equations (10), (18), (29) follow:

L̂t = [M̂, L̂], L̂τ
t = [L̂τ , M̂ τ ].

From the Lagrange formula (see [16]) for the systems (13), (28)

(g�f)t =


 m∑

i=1

i−1∑
j=1

(−1)j
(
g�vi

)(i)
f (i−j−1)




x

(30)

we obtain a possibility to express all potentials (14), (15), (19), (25), (26), (27) in terms of fixed
potential

Ω[g, f ] =
∫ (x,t)

(x0,t0)
P [g, f ] dx+Q[g, f ] dt, Ω[g, f ](x0, t0) = 0, (31)

where P [g, f ] = Ωx[g, f ] = g�f , Q[g, f ]x = Pt[g, f ] (see (30)). �

4 Conclusion remarks

I. In paper [18] a general (N × N)-matrix operator W (16) of the BDT was obtain as a com-
position of K simplest Darboux-type transformations and K simplest inverse Darboux-type
transformations. In this paper it is shown too that the operator W admits a so-called canonical
factorization by the K simplest elementary Darboux-like transformations.

II. We used a particular case of the general dressing operator W for integration of the Lax–
Zakharov–Shabat equations in a matrix algebra of differential [16] and pseudo-differential (in
the scalar case cKP hierarchy, see [17, 19]) operators [20]. This particular case corresponds to
a (K ×K)-matrix potential function Ω (31) of the form

Ω[ψ,ϕ] = D−1
{
ψ�ϕ

}
:= C +

∫ x

±∞
ψ�(s, t)ϕ(s, t) ds.
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Wide classes of exact solutions for the integrable systems of the soliton theory in terms of
Grammian–type determinants were obtained in these papers.

III. The general BDT Theorem 1 will be applied to constructing the solutions of matrix cKP
hierarchy in forthcoming publications.
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