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In this paper we provide a connection between the solutions of the classical dynamical Yang–
Baxter equation (with not necessary Abelian base) and quasi-Poisson homogeneous spaces
of quasi-Poisson Lie groups.

1 Introduction

This paper is a continuation of [6]. Let us recall the main result of [6]. Let G be a Lie group,
g = LieG, U ⊂ G a connected closed Lie subgroup such that the corresponding subalgebra u ⊂ g

is reductive in g (i.e., there exists an u-invariant subspace m ⊂ g such that g = u ⊕ m), and
Ω ∈ (u⊗u)⊕ (m⊗m) a symmetric tensor. Take a solution ρ ∈ g⊗g of the classical Yang–Baxter
equation such that ρ + ρ21 = Ω and consider the corresponding Poisson Lie group structure πρ

on G. Assuming additionally that

ρ + s ∈ Ω
2

+
(∧2m

)u (1)

for some element s ∈ ∧2 g that satisfies a certain “twist” equation, we establish a 1-1 correspon-
dence between the moduli space of classical dynamical r-matrices for the pair (g, u) with the
symmetric part Ω

2 and the set of all structures of Poisson homogeneous (G, πρ)-spaces on G/U .
We emphasize that the first example of such a correspondence was found by Lu in [8].

In this paper we generalize the main result of [6]. We replace Poisson Lie groups (resp. Poisson
homogeneous spaces) by quasi-Poisson Lie groups (resp. quasi-Poisson homogeneous spaces), but
even in the Poisson case our result (see Theorem 2) is stronger than in [6]: condition (1) is relaxed
now. We hope that now we present this result in its natural generality.

The paper is organized as follows. In Section 2 we present the definitions of classical dynamical
r-matrices, quasi-Poisson Lie groups and their quasi-Poisson homogeneous spaces, and then
formulate and prove the main result of this paper, Theorem 2. In Section 3 we consider an
example: the case of quasi-triangular (in the strict sense) classical dynamical r-matrices for the
pair (g, u), where g is a complex semisimple Lie algebra, and u is its regular reductive subalgebra.

All Lie algebras in this paper assumed to be finite-dimensional, and the ground field is C.

2 General results

In this section we describe a connection between quasi-Poisson homogeneous spaces and classical
dynamical r-matrices (see Theorem 2).
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First we recall some definitions. Suppose G is a Lie group, U ⊂ G its connected Lie subgroup.
Let g and u be the corresponding Lie algebras. Choose a basis x1, . . . , xr in u. Denote by D
the formal neighborhood of zero in u∗. By functions from D to a vector space V we mean the
elements of the space V [[x1, . . . , xr]], where xi are regarded as coordinates on D. Further, if
ω ∈ Ωk(D, V ) is a k-form on D with values in vector space V , then by ω : D → ∧k u ⊗ V we
denote the corresponding function.

Definition 1 (see [5]). Classical dynamical r-matrix for the pair (g, u) is an u-equivariant
function r : D → g⊗ g that satisfies the classical dynamical Yang–Baxter equation (CDYBE):

Alt(dr) + CYB(r) = 0,

where CYB(r)=
[
r12, r13

]
+

[
r12, r23

]
+

[
r13, r23

]
, and for x∈g⊗3 we set Alt(x)=x123+ x231+ x312.

We will also require the quasi-unitarity property :

r + r21 = Ω ∈ (
S2g

)g
.

It is easy to see that if r satisfies the CDYBE and the quasi-unitarity condition, then Ω is
constant.

We denote the set of all classical dynamical r-matrices for the pair (g, u) such that r+r21 = Ω
by Dynr(g, u, Ω).

Denote by Map(D, G)u the set of all u-equivariant maps from D to G. Suppose that r : D →
g⊗ g is an u-equivariant function. Then for any g ∈Map(D, G)u define a function rg : D → g⊗g

by

rg = (Adg ⊗Adg)
(
r − ηg + ηg

21 + τg

)
,

where ηg = g−1dg, and τg(λ) = (λ ⊗ 1 ⊗ 1)
([

ηg
12, ηg

13
]
(λ)

)
. Then rg is a classical dynamical

r-matrix if and only if r is. The transformation r �→ rg is called a gauge transformation. In fact,
it is an action of the group Map(D, G)u on Dynr(g, u, Ω).

Following [5], we denote the moduli space Map0(D, G)u\Dynr(g, u, Ω) by M(g, u, Ω) (here
Map0(D, G)u = {g ∈Map(D, G)u : g(0) = e}).

Now we recall the definition of quasi-Poisson Lie groups and their quasi-Poisson homogeneous
spaces (for details see [7, 1, 2]).

Definition 2. Let G be a Lie group, g its Lie algebra, πG a bivector field on G, and ϕ ∈ ∧3 g.
A triple (G, πG, ϕ) is called a quasi-Poisson Lie group if

πG(gg′) = (lg)∗πG(g′) + (rg′)∗πG(g),
1
2
[πG, πG] =←−ϕ −−→ϕ ,

[πG,←−ϕ ] = 0,

where lg (resp. rg) is left (resp. right) multiplication by g, −→a (resp. ←−a ) is the left (resp. right)
invariant tensor field on G corresponding to a and [·, ·] is the Schouten bracket of multivector
fields.

Definition 3. Suppose that (G, πG, ϕ) is a quasi-Poisson group, X is a homogeneous G-
space equipped with a bivector field πX . Then (X, πX) is called a quasi-Poisson homogeneous
(G, πG, ϕ)-space if

πX(gx) = (lg)∗πX(x) + (ρx)∗πG(g),
1
2
[πX , πX ] = ϕX

(here lg denotes the mapping x �→ g · x, ρx is the mapping g �→ g · x, and ϕX is the trivector
field on X induced by ϕ).
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Now take ρ ∈ g ⊗ g such that ρ + ρ21 = Ω ∈ (S2g)g. Let Λ = ρ − Ω
2 ∈

∧2 g. Define
a bivector field on G by πρ = −→ρ − ←−ρ =

−→
Λ − ←−Λ . Set ϕ = −CYB(ρ). Then (G, πρ, ϕ) is

a quasi-Poisson Lie group (such quasi-Poisson Lie groups are called quasi-triangular). De-
note by Homsp(G, πρ, ϕ, U) the set of all (G, πρ, ϕ)-homogeneous quasi-Poisson structures
on G/U . We will see that, under certain conditions, there is a bijection between M(g, u, Ω)
and Homsp(G, πρ, ϕ, U).

Assume that b ∈ (g⊗g)u is such that b+b21 = Ω. Let B = b− Ω
2 . Define a bivector field on G

by π̃ρ
b =
−→
b −←−ρ =

−→
B −←−Λ . Then there is a bivector field on G/U defined by πρ

b (g) = p∗(π̃
ρ
b (g))

(here p : G → G/U is the canonical projection, and g = p(g)). It is well defined, since b is
u-invariant.

Proposition 1. In this setting (G/U, πρ
b ) is a (G, πρ, ϕ)-quasi-Poisson homogeneous space iff

CYB(b) = 0 in
∧3(g/u).

Proof. First we check the “multiplicativity” of πρ
b . For all g ∈ G, u ∈ U we have

g · π̃ρ
b (u) + πρ(g) · u = gu · b− ρ · gu = π̃ρ

b (gu).

Using p∗, we get the required equality πρ
b (g) = g · πρ

b (e) + p∗πρ(g).
Now we need to prove that 1

2 [πρ
b , πρ

b ] = ϕG/U iff CYB(b) = 0 in
∧3(g/u). We check it directly:

1
2
[π̃ρ

b , π̃ρ
b ] =

1
2

(
[
−→
B,
−→
B ] + [

←−
Λ ,
←−
Λ ]

)
= −−−−−−→CYB(B) +

←−−−−−
CYB(Λ) = −−−−−−→CYB(b) +←−ϕ .

Consequently, 1
2 [πρ

b , πρ
b ] = p∗(−

−−−−−→
CYB(b)+←−ϕ ) = −p∗(

−−−−−→
CYB(b))+ϕG/U . So we see that 1

2 [πρ
b , πρ

b ] =
ϕG/U iff CYB(b) = 0 in

∧3(g/u). �

Suppose r ∈ Dynr(g, u, Ω).

Proposition 2 (see [8]). CYB(r(0)) = 0 in
∧3(g/u).

Corollary 1. r �→ πρ
r(0) is a map from Dynr(g, u, Ω) to Homsp(G, πρ, ϕ, U).

Proposition 3 (see [6]). If g ∈Map0(D, G)u, then πρ
r(0) = πρ

rg(0).

Corollary 2. r �→ πρ
r(0) defines a map from M(g, u, Ω) to Homsp(G, πρ, ϕ, U).

From now on we will assume that the following conditions are satisfied:

u has an u-invariant complement m in g; (2a)
Ω ∈ (u⊗ u)⊕ (m⊗m). (2b)

Consider the algebraic variety

MΩ =
{

x ∈ Ω
2

+
(∧2m

)u
∣∣∣∣ CYB(x) = 0 in

∧3(g/u)
}

.

Theorem 1 (Etingof, Schiffman; see [5]). (1) Any class C ∈ M(g, u, Ω) has a representative
r ∈ C such that r(0) ∈MΩ. Moreover, this defines an embedding M(g, u, Ω)→MΩ.

(2) Assume that (2b) holds. Then the map M(g, u, Ω)→MΩ defined above is a bijection.

Proposition 4. The mapping b �→ πρ
b from MΩ to Homsp(G, πρ, ϕ, U) is a bijection.
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Proof. Let us construct the inverse mapping. Assume that π is a bivector field on G/U defining
a structure of a (G, πρ, ϕ)-quasi-Poisson homogeneous space. Then π(e) ∈ ∧2(g/u) =

∧2 m.
Consider b = Ω

2 + π(e) + p∗(Λ). We will prove that b ∈ MΩ and the mapping π �→ b is inverse
to the mapping g �→ πρ

b .
First we prove that b ∈ ( ∧2 m

)u+ Ω
2 . For all u ∈ U we have π(e)+p∗(Λ) = π(u·e)+p∗(Λ·u) =

u · π(e) + p∗(πρ(u)) + p∗(Λ · u) = u · π(e) + p∗(u · ρ− u · Ω
2 ) = u · (π(e) + p∗(Λ)). It means that

π(e) + p∗(Λ) ∈ (∧2 m
)u.

Now we prove that π = πρ
b . By definition, πρ

b (g) = p∗(g · π(e) + g · p∗Λ − Λ · g) = π(g) +
p∗(g · p∗Λ − Λ · g − g · Λ + Λ · g) = π(g). So πρ

b defines a structure of (G, πρ, ϕ)-quasi-Poisson
homogeneous space. By Proposition 1, it means that b ∈MΩ. �

Theorem 2. Suppose (2a) and (2b) are satisfied. Then the map r �→ πρ
r(0) from M(g, u, Ω) to

Homsp(G, πρ, ϕ, U) is a bijection.

Proof. This theorem follows from Theorem 1 and Proposition 4. �

Remark 1. If ϕ = −CYB(ρ) = 0, then (G, πρ) is a Poisson Lie group. In this case we
get a bijection between M(g, u, Ω) and the set of all Poisson (G, πρ)-homogeneous structures
on G/U .

Remark 2. Assume that only (2a) holds. Clearly, in this case the map r �→ πρ
r(0) defines an

embedding M(g, u, Ω) ↪→ Homsp(G, πρ, ϕ, U).

Remark 3. If (2a) fails, then the spaceM(g, u, Ω) may be infinite-dimensional (see [9]), while
Homsp(G, πρ, ϕ, U) is always finite-dimensional.

3 Example: the semisimple case

Assume that g is a semisimple Lie algebra. Choose a Cartan subalgebra h ⊂ g and denote by R
the corresponding root system. Suppose 〈·, ·〉 is a non-degenerate symmetric invariant bilinear
form on g, and Ω ∈ (S2g)g is the corresponding tensor. We will describeMΩ for a reductive Lie
subalgebra u ⊂ g containing h.

Precisely, consider a set U ⊂ R such that u = h ⊕ ∑
α∈U

gα is a reductive Lie subalgebra. In

this case we will call U reductive (in other words, a set U ⊂ R is reductive iff (U+U)∩R ⊂ U
and −U = U). Note that in this situation condition (2a) is satisfied, since m =

∑
α∈R\U

gα is an

u-invariant complement to u in g.
Fix Eα ∈ gα such that 〈Eα, E−α〉 = 1 for all α ∈ R. Then Ω = Ωh +

∑
α∈R

Eα ⊗ E−α, where

Ωh ∈ S2h. Notice that (2b) is also satisfied.

Proposition 5. Suppose that x =
∑

α∈R

xαEα ⊗ E−α. Then x + Ω
2 ∈MΩ iff

xα = 0 for α ∈ U; (3a)
x−α = −xα for α ∈ R; (3b)
if α, β ∈ R\U, γ ∈ U, α + β + γ = 0, then xα + xβ = 0; (3c)
if α, β, γ ∈ R\U, α + β + γ = 0, then xαxβ + xβxγ + xγxα = −1/4. (3d)

Note that (3c) is equivalent to the following condition:

if α ∈ R\U, β ∈ U, then xα+β = xα.
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Proof. It is easy to see that x ∈ ( ∧2 m
)h iff (3a) and (3b) are satisfied.

Suppose that cαβ are defined by [Eα, Eβ ] = cαβEα+β .
For any γ ∈ U we have

[Eγ , x] =
∑

α∈R\U
xα([Eγ , Eα]⊗ E−α + Eα ⊗ [Eγ , E−α]) =

=
∑

α,β∈R\U,α+β+γ=0

(xαcγαE−β ⊗ E−α − xαcγαE−α ⊗ E−β)

=
∑

α,β∈R\U,α+β+γ=0

(xβcγα − xαcγβ) E−α ⊗ E−β

=
∑

α,β∈R\U,α+β+γ=0

(xα + xβ)cγαE−α ⊗ E−β .

Thus x is u-invariant if and only if xα + xβ = 0 for all α, β ∈ R\U such that α + β ∈ U.
Finally, we calculate CYB

(
x + Ω

2

)
= CYB(x) + CYB

(
Ω
2

)
(see [1]):

CYB(x) =
∑

α,β∈R

xαxβ

(
[Eα, Eβ]⊗ E−α ⊗ E−β + Eα ⊗ [E−α, Eβ]⊗ E−β

+ Eα ⊗ Eβ ⊗ [E−α, E−β]
)

=
∑

α,β,γ∈R,α+β+γ=0

(
xαxβcαβE−γ ⊗ E−α ⊗ E−β

− xαxβcαβE−α ⊗ E−γ ⊗ E−β + xαxβcαβE−α ⊗ E−β ⊗ E−γ

)
=

∑
α,β,γ∈R,α+β+γ=0

cαβ(xαxβ + xαxγ + xβxγ)E−α ⊗ E−β ⊗ E−γ ,

CYB
(

Ω
2

)
≡ 1

4

∑
α,β,γ∈R\U,α+β+γ=0

cαβE−α ⊗ E−β ⊗ E−γ

(mod u⊗ g⊗ g + g⊗ u⊗ g + g⊗ g⊗ u).

So the image of CYB
(
x + Ω

2

)
in

∧3(g/u) vanishes if and only if the condition (3d) is satisfied. �

Proposition 6. Suppose Π ⊂ R is a set of simple roots, R+ is the corresponding set of positive
roots. Choose a subset ∆ ⊂ Π such that N = (span∆) ∩R contains U. Find h ∈ h such that
α(h) /∈ πiZ for α ∈ N\U and α(h) ∈ πiZ for α ∈ U. Then xα defined by

xα =




0, α ∈ U,
1
2 coth α(h), α ∈ N\U,

±1/2, α ∈ ±R+\N

satisfies (3a)–(3d). Moreover, any function satisfying (3a)–(3d) is of this form.

First, we prove the second part of the proposition. Set

P = {α |xα �= −1/2}.

It is obvious that U ⊂ P.

Lemma 1. P is parabolic.
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Proof. Obviously, P ∪ (−P) = R.
We have to prove that if α, β ∈ P and α + β ∈ R, then α + β ∈ P. We do it by considering

several cases. If α, β ∈ U, then α+β ∈ U ⊂ P. If α ∈ P\U and β ∈ U, then xα+β = xα �= −1/2
by (3c) and α + β ∈ P. If α, β ∈ P\U, there are two possibilities. If α + β ∈ U, then there is
nothing to prove. If α + β /∈ U, then, by (3d), xαxβ − xα+β(xα + xβ) = −1/4. If xα+β = −1/2,
then from this equation it follows that xα = −1/2. Consequently, α + β ∈ P. �

Since P is parabolic, there exists a set of positive roots Π ⊂ R and a subset ∆ ⊂ Π such
that P = R+ ∪N (see [4], chapter VI, § 1, proposition 20); here R+ is the set of positive roots
corresponding to Π, and N = (span∆) ∩R is the Levi subset corresponding to ∆.

Let N+ = N ∩R+ be the set of positive roots in N corresponding to ∆. For all α ∈ ∆\U
let yα = arccoth 2xα, for α ∈ ∆ ∩U let yα = 0. Find h ∈ h such that yα = α(h). Now we prove
that h satisfies Proposition 6.

Lemma 2. α(h) /∈ πiZ and xα = 1
2 coth α(h) for all α ∈ N\U; α(h) ∈ πiZ for α ∈ U.

Proof. It is enough to prove this for α positive, so that we can use the induction on the
length l(α). The case l(α) = 1 is trivial. Suppose that l(α) = k. Then we can find α′ ∈ N+ and
αk ∈ ∆ such that l(α′) = k − 1 and α = α′ + αk. Consider two cases.

First, suppose that α ∈ U.
If αk ∈ U, then α′ ∈ U. By induction, α(h) = α′(h) ∈ πiZ.
If αk /∈ U, then α′ /∈ U. By induction assumption, xα′ = 1

2 coth α′(h). From (3c) it follows
that 0 = xα′ + xαk

= 1
2(coth α′(h) + cothαk(h)) and, consequently, α(h) ∈ πiZ.

Now suppose that α /∈ U.
If αk ∈ U, then α′ /∈ U. Since αk(h) = 0, by (3c) we have xα = xα′+αk

= xα′ = 1
2 coth α′(h) =

1
2 coth α(h).

When αk /∈ U, then there are two possibilities again. If α′ ∈ U, then by induction α′(h) ∈
πiZ. By (3c), 0 = xα + x−αk

. Consequently, xα = xαk
= 1

2 coth αk(h) = 1
2 coth α(h). If α′ /∈ U,

then, by (3d), xαx−α′ + x−α′x−αk
+ x−αk

xα = −1/4. This equation can be rewritten as

xα =
1/4 + xα′xαk

xα′ + xαk

=
1
2

1 + coth α′(h) coth αk(h)
coth α′(h) + cothαk(h)

=
1
2

coth α(h),

and the lemma is proved. �

To prove the first part of the proposition we need the following root theory lemma.

Lemma 3. Suppose P ⊂ R is parabolic. Then Y = R\P has the following properties:

(−Y) ∩Y = ∅; (4a)
(Y + Y) ∩R ⊂ Y; (4b)
if α ∈ Y, β ∈ R\Y and α− β ∈ R, then α− β ∈ Y. (4c)

Proof. Since (4a) is obvious and (4b) follows from (4a) and (4c), we prove only the latter
property: if α ∈ Y and β ∈ P are such that α − β ∈ P, then, since P is parabolic, we would
have α = (α− β) + β ∈ P. So α− β ∈ Y. �

Now we just check (3a)–(3d) directly. Suppose that N is defined as in the proposition. Let
Y = R+\N. Then P = R\Y = −R+ ∪N is a parabolic set, and Y satisfies (4a)–(4c).

Lemma 4. Suppose xα is as defined in Proposition 6. Then xα satisfies (3a)–(3d).
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Proof. (3a) we have already, (3b) is trivial.
To prove (3c), consider the following cases. First, take α, β ∈ N\U, γ ∈ U, α + β + γ = 0.

Then xα+xβ = 1
2(coth α(h)+coth β(h)) = 0 as α+β = −γ ∈ U. The case α ∈ N\U, β ∈ R\N,

γ ∈ U is impossible, because then we would have β = −α− γ ∈ N. The case α, β ∈ ±Y, γ ∈ U
is also impossible, because −γ = α + β ∈ ±Y. Finally, if α ∈ ±Y, β ∈ ∓Y, γ ∈ U, then
xα + xβ = ±1

2 ∓ 1
2 = 0.

Condition (3d) can be proved in a similar way. �

Now to summarize:

Theorem 3. Suppose U ⊂ G is the connected Lie subgroup corresponding to u ⊂ g. Take
ρ ∈ g⊗g such that ρ+ρ21 = Ω and set ϕ = −CYB(ρ). Then any (G, πρ, ϕ)-homogeneous quasi-
Poisson space structure on G/U is exactly of the form π = πρ

x+Ω/2 for some x =
∑

α∈R

xαEα⊗E−α,

where xα is defined in Proposition 6.

Remark 4. Let ρ be any solution of the classical Yang–Baxter equation such that ρ + ρ21 = Ω
(see [3]). Then (G, πρ) is a Poisson Lie group and therefore Theorem 3 provides the list of all
(G, πρ)-homogeneous Poisson space structures on G/U .
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Free University of Berlin; we thank our colleagues there for their hospitality.

[1] Alekseev A. and Kosmann-Schwarzbach Y., Manin pairs and moment maps, J. Diff. Geom., 2000, V.56,
133–165.

[2] Alekseev A., Kosmann-Schwarzbach Y. and Meinrenken E., Quasi-Poisson manifolds, Canad. J. Math., 2002,
V.54, 3–29.

[3] Belavin A.A. and Drinfeld V.G., On classical Yang–Baxter equation for simple Lie algebras, Funct. An.
Appl., 1982, V.16, 1–29.
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