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Generalizations of Schouten–Nijenhuis Bracket
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The Schouten–Nijenhuis bracket is generalized for the superspace case and for the Poisson
brackets of opposite Grassmann parities.

1 Introduction

Recently a recipe for the construction of new Poisson brackets from the bracket with a definite
Grassmann parity was proposed [1]. This recipe is based on the use of exterior differentials
of diverse Grassmann parities. It was indicated in [1] that this recipe leads to the generaliza-
tions of the Schouten–Nijenhuis bracket [2–8] on both the superspace case and the case of the
brackets with diverse Grassmann parities. In the present report we give the details of these
generalizations1.

2 Poisson brackets related with the exterior differentials

Let us recall the recipe for the construction from a given Poisson bracket of a Grassmann parity
ε ≡ 0, 1 (mod 2) of another one.

A Poisson bracket, having a Grassmann parity ε, written in arbitrary non-canonical phase
variables za

{A, B}ε = A
←
∂ za ωab

ε (z)
→
∂ zb B, (1)

where
←
∂ and

→
∂ are right and left derivatives respectively, has the following main properties:

g({A, B}ε) ≡ gA + gB + ε (mod 2),

{A, B}ε = −(−1)(gA+ε)(gB+ε){B, A}ε,∑
(ABC)

(−1)(gA+ε)(gC+ε){A, {B, C}ε}ε = 0,

which lead to the corresponding relations for the matrix ωab
ε

g
(
ωab

ε

)
≡ ga + gb + ε (mod 2), (2)

ωab
ε = −(−1)(ga+ε)(gb+ε)ωba

ε , (3)∑
(abc)

(−1)(ga+ε)(gc+ε)ωad
ε ∂zdωbc

ε = 0, (4)

where ∂za ≡ ∂/∂za and ga ≡ g(za), gA ≡ g(A) are the corresponding Grassmann parities of phase
coordinates za and a quantity A and a sum with a symbol (abc) under it designates a summation

1Concerning the generalizations of the Schouten–Nijenhuis bracket see also [9, 10].
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over cyclic permutations of a, b and c. We shall consider the non-degenerate matrix ωab
ε which

has an inverse matrix ωε
ab(−1)gbε (a grading factor is chosen for the convenience)

ωab
ε ωε

bc(−1)gcε = δa
c

(there is no summation over ε in the previous relation) with the properties

g(ωε
ab) ≡ ga + gb + ε (mod 2),

ωε
ab = (−1)(ga+1)(gb+1)ωε

ba,∑
(abc)

(−1)(ga+1)gc∂zaωε
bc = 0.

The Hamilton equations for the phase variables za, which correspond to a Hamiltonian Hε

(g(Hε) = ε),

dza

dt
= {za, Hε}ε = ωab

ε ∂zbHε (5)

can be represented in the form

dza

dt
= ωab

ε ∂zbHε ≡ ωab
ε

∂(dζHε)
∂(dζzb)

def= (za, dζHε)ε+ζ , (6)

where dζ (ζ = 0, 1) is one of the exterior differentials d0 or d1, which have opposite Grassmann
parities 0 and 1 respectively and following symmetry properties with respect to the ordinary
multiplication

d0z
ad0z

b = (−1)gagbd0z
bd0z

a,

d1z
ad1z

b = (−1)(ga+1)(gb+1)d1z
bd1z

a (7)

and exterior products

d0z
a ∧ d0z

b = (−1)gagb+1d0z
b ∧ d0z

a,

d1z
a∧̃d1z

b = (−1)(ga+1)(gb+1)d1z
b∧̃d1z

a. (8)

We use different notations ∧ and ∧̃ for the exterior products of d0z
a and d1z

a respectively.
By taking the exterior differential dζ from the Hamilton equations (5), we obtain

d(dζz
a)

dt
= (dζω

ab
ε )

∂(dζHε)
∂(dζzb)

+ (−1)ζ(ga+ε)ωab
ε ∂zb(dζHε)

def= (dζz
a, dζHε)ε+ζ . (9)

As a result of equations (6) and (9) we have by definition the following binary composition for
functions F and H of the variables za and their differentials dζz

a ≡ ya
ζ

(F, H)ε+ζ = F
[←
∂ za ωab

ε

→
∂ yb

ζ
+(−1)ζ(ga+ε)

←
∂ ya

ζ
ωab

ε

→
∂ zb +

←
∂ ya

ζ
yc

ζ

(
∂zcωab

ε

) →
∂ yb

ζ

]
H. (10)

By using relations (2)–(4) for the matrix ωab
ε , we can establish the following properties for the

binary composition (10)

g[(F, H)ε+ζ ] ≡ gF + gH + ε + ζ (mod 2),

(F, H)ε+ζ = −(−1)(gF +ε+ζ)(gH+ε+ζ)(H, F )ε+ζ ,∑
(EFH)

(−1)(gE+ε+ζ)(gH+ε+ζ)(E, (F, H)ε+ζ)ε+ζ = 0,
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which mean that the composition (10) satisfies all the main properties for the Poisson bracket
with the Grassmann parity equal to ε + ζ. Thus, the application of the exterior differentials of
opposite Grassmann parities to the given Poisson bracket results in the brackets of the different
Grassmann parities.

By transition to the co-differential variables yε+ζ
a , related with differentials ya

ζ by means of
the matrix ωab

ε

ya
ζ = yε+ζ

b ωba
ε , (11)

the Poisson bracket (10) takes a canonical form2

(F, H)ε+ζ = F
[←
∂ za

→
∂ yε+ζ

a
−(−1)ga(ga+ε+ζ)

←
∂ yε+ζ

a

→
∂ za

]
H, (12)

that can be proved with the use of the Jacobi identity (4).
The bracket (10) is given on the functions of the variables za, ya

ζ

F =
∑

p

1
p!

y
ap

ζ · · · ya1
ζ fa1...ap(z), g(fa1...ap) = gf + ga1 + · · · + gap ,

whereas this bracket, rewritten in the form (12), is given on the functions of variables za and
yε+ζ

a

F =
∑

p

1
p!

yε+ζ
ap

· · · yε+ζ
a1

fa1...ap(z), g(fa1...ap) = gf + εp + ga1 + · · · + gap .

We do not exclude a possibility of the own Grassmann parity gf ≡ g(f) for a quantity f . By
taking into account relation (11), we have the following rule for the rising of indices:

f b1...bp = (−1)

p−1∑
k=1

[gb1
+···+gbk

+k(ε+ζ)](gbk+1
+gak+1

+ε)
ω

bpap
ε · · ·ωb1a1

ε fa1...ap .

Note that the quantities fa1...ap and fa1...ap have in general the different symmetry and parity
properties.

In the case ζ = 1, due to relations (7), (8), the terms in the decomposition of a function
F (za, ya

1) into degrees p of the variables ya
1

F =
∑

p

1
p!

y
ap

1 · · · ya1
1 fa1...ap(z)

can be treated as p-forms and the bracket (10) can be considered as a Poisson bracket on p-forms
so that being taken between a p-form and a q-form it results in a (p + q − 1)-form3. Thus, the
bracket (10) is a generalization of the bracket introduced in [12] on the superspace case and on
the case of the brackets (1) with arbitrary Grassmann parities ε (ε = 0, 1).

3 Generalizations of the Schouten–Nijenhuis bracket

If we take the bracket in the canonical form (12), then we obtain the generalizations of the
Schouten–Nijenhuis bracket [2,3] (see also [4–8,12]) onto the cases of superspace and the brackets

2There is no summation over ε in relation (11).
3Concerning a Poisson bracket between 1-forms and its relation with the Lie bracket of vector fields see in the

book [11].
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of diverse Grassmann parities. Indeed, let us consider the bracket (12) between monomials F
and H having respectively degrees p and q

F =
1
p!

yε+ζ
ap

· · · yε+ζ
a1

fa1...ap(z), g(fa1...ap) = gf + pε + ga1 + · · · + gap ,

H =
1
q!

yε+ζ
aq

· · · yε+ζ
a1

ha1...aq(z), g(ha1...aq) = gh + qε + ga1 + · · · + gaq .

Then as a result we obtain

(F, H)ε+ζ =
(−1)[gb1

+···+gbq−1
+(q−1)(ε+ζ)](gf+gl+pζ)

p!(q − 1)!

× yε+ζ
bq−1

· · · yε+ζ
b1

yε+ζ
ap

· · · yε+ζ
a1

(
fa1...ap

←
∂ zl

)
hb1...bq−1l

− (−1)(gl+ε+ζ)(gf+pε+ga2+···+gap )+[gb1
+···+gbq +q(ε+ζ)][gf+ε+(p−1)ζ]

(p − 1)!q!

× yε+ζ
bq

· · · yε+ζ
b1

yε+ζ
ap

· · · yε+ζ
a2

f la2...ap∂zlhb1...bq . (13)

3.1 Particular cases

Let us consider the formula (13) for the particular values of ε and ζ.
1. We start from the case which leads to the usual Schouten–Nijenhuis bracket for the skew-

symmetric contravariant tensors. In this case, when ε = 0, ζ = 1 and the matrix ωab
0 (x) =

−ωba
0 (x) corresponds to the usual Poisson bracket for the commuting coordinates za = xa, we

have

(F, H)1 =
(−1)(q−1)(gf+p)

p!(q − 1)!
Θbq−1 · · ·Θb1Θap · · ·Θa1

(
fa1...ap

←
∂ xl

)
hb1...bq−1l

− (−1)gf (q+1)+q(p−1)

(p − 1)!q!
Θbq · · ·Θb1Θap · · ·Θa2f

la2...ap∂xlhb1...bq , (14)

where Θa ≡ y1
a are Grassmann co-differential variables related owing to (11) with the Grassmann

differential variables Θa ≡ d1x
a

Θa = Θbω
ba
0 .

When Grassmann parities of the quantities f and h are equal to zero gf = gh = 0, we obtain
from (14)

(F, H)1
def= (−1)(p+1)q+1Θap+q · · ·Θa2 [F, H]a2...ap+q ,

where [F, H]a2...ap+q are components of the usual Schouten–Nijenhuis bracket (see, for exam-
ple, [7]) for the contravariant antisymmetric tensors4. This bracket has the following symmetry
property

[F, H] = (−1)pq[H, F ]

and satisfies the Jacobi identity∑
(FHE)

(−1)ps[[F, H], E] = 0,

where s is a degree of a monomial E.
4Here and below we use the same notation [F, H] for the different brackets. We hope that this will not lead to

the confusion.
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2. In the case ε = ζ = 0 and ωab
0 (x) = −ωba

0 (x) we obtain the bracket for symmetric
contravariant tensors (see, for example, [6])

(F, H)0 =
1

p!(q − 1)!
y0

bq−1
· · · y0

b1y
0
ap

· · · y0
a1

(∂xlfa1...ap)hb1...bq−1l

− 1
(p − 1)!q!

y0
bq
· · · y0

b1y
0
ap

· · · y0
a2

f la2...ap∂xlhb1...bq
def= y0

ap+q
· · · y0

a2
[F, H]a2...ap+q ,

where commuting co-differentials y0
a connected with commuting differentials ya

0 ≡ d0x
a in accor-

dance with (11)

ya
0 = y0

bω
ba
0

and the bracket [F, H]a2...ap+q has the following symmetry property

[F, H] = −(−1)gf gh [H, F ]

and satisfies the Jacobi identity∑
(EFH)

(−1)gegh [E, [F, H]] = 0.

3. By taking the Martin bracket [13] ωab
0 (θ) = ωba

0 (θ) with Grassmann coordinates za = θa

(ga = 1) as an initial bracket (1), we have in the case ζ = 0 for antisymmetric contravariant
tensors on the Grassmann algebra

(F, H)0 =
(−1)(q−1)(gf+1)

p!(q − 1)!
Θbq−1 · · ·Θb1Θap · · ·Θa1(f

a1...ap
←
∂ θl)hb1...bq−1l

+
(−1)(q−1)gf+p

(p − 1)!q!
Θbq · · ·Θb1Θap · · ·Θa2f

la2...ap∂θlhb1...bq

def= Θap+q · · ·Θa2 [F, H]a2...ap+q ,

where the Grassmann co-differentials Θa related with the Grassmann differentials Θa as

d0θ
a ≡ Θa = Θbω

ba
0 .

The bracket [F, H] has the following symmetry property

[F, H] = −(−1)gf gh [H, F ]

and satisfies the Jacobi identity∑
(EFH)

(−1)gegh [E, [F, H]] = 0.

4. By taking the Martin bracket again, in the case ζ = 1

d1θ
a ≡ xa = xbω

ba
0

we obtain for the symmetric tensors on Grassmann algebra

(F, H)1 =
1

p!(q − 1)!
xbq−1 · · ·xb1xap · · ·xa1(f

a1...ap
←
∂ θl)hb1...bq−1l

− 1
(p − 1)!q!

xbq · · ·xb1xap · · ·xa2f
la2...ap∂θlhb1...bq

def= xap+q · · ·xa2 [F, H]a2...ap+q .
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The bracket [F, H] has the following symmetry property

[F, H] = −(−1)(gf+p+1)(gh+q+1)[H, F ]

and satisfies the Jacobi identity
∑

(EFH)

(−1)(ge+s+1)(gh+q+1)[E, [F, H]] = 0.

5. In general, if we take the even bracket in superspace with coordinates za = (x, θ), where x
and θ are respectively commuting and anticommuting (Grassmann) variables, then in the case
ζ = 1 we have

(F, H)1 =
(−1)(gb1

+···+gbq−1
+q−1)(gf+gl+p)

p!(q − 1)!
y1

bq−1
· · · y1

b1y
1
ap

· · · y1
a1

(fa1...ap
←
∂ zl)hb1...bq−1l

− (−1)(gl+1)(gf+ga2+···+gap )+(gb1
+···+gbq +q)(gf+p−1)

(p − 1)!q!
y1

bq
· · · y1

b1y
1
ap

· · · y1
a2

f la2...ap∂zlhb1...bq

def= y1
ap+q

· · · y1
a2

[F, H]a2...ap+q ,

where

d1z
a ≡ ya

1 = y1
bω

ba
0 .

The bracket [F, H] has the following symmetry property

[F, H] = −(−1)(gf+p+1)(gh+q+1)[H, F ]

and satisfies the Jacobi identity
∑

(EFH)

(−1)(ge+s+1)(gh+q+1)[E, [F, H]] = 0.

6. In the case of the even bracket in superspace as initial one with ζ = 0 we obtain

(F, H)0 =
(−1)(gb1

+···+gbq−1
)(gf+gl)

p!(q − 1)!
y0

bq−1
· · · y0

b1y
0
ap

· · · y0
a1

(fa1...ap
←
∂ zl)hb1...bq−1l

− (−1)gl(gf+ga2+···+gap )+gf (gb1
+···+gbq )

(p − 1)!q!
y0

bq
· · · y0

b1y
0
ap

· · · y0
a2

f la2...ap∂zlhb1...bq

def= y0
ap+q

· · · y0
a2

[F, H]a2...ap+q ,

where

d0z
a ≡ ya

0 = y0
bω

ba
0 .

The bracket [F, H] has the following symmetry property

[F, H] = −(−1)gf gh [H, F ]

and satisfies the Jacobi identity
∑

(EFH)

(−1)gegh [E, [F, H]] = 0.
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7. Taking as an initial bracket the odd Poisson bracket in superspace with coordinates za,
for the case ζ = 0 we have

(F, H)1 =
(−1)(gb1

+···+gbq−1
+q−1)(gf+gl)

p!(q − 1)!
y1

bq−1
· · · y1

b1y
1
ap

· · · y1
a1

(fa1...ap
←
∂ zl)hb1...bq−1l

− (−1)(gl+1)(gf+p+ga2+···+gap )+(gf−1)(gb1
+···+gbq +q)

(p − 1)!q!

× y1
bq
· · · y1

b1y
1
ap

· · · y1
a2

f la2...ap∂zlhb1...bq def= y1
ap+q

· · · y1
a2

[F, H]a2...ap+q ,

where

d0z
a ≡ ya

0 = y1
bω

ba
1 .

The bracket [F, H] has the following symmetry property

[F, H] = −(−1)(gf+1)(gh+1)[H, F ]

and satisfies the Jacobi identity∑
(EFH)

(−1)(ge+1)(gh+1)[E, [F, H]] = 0.

8. At last for the odd Poisson bracket in superspace, taking as an initial one, we obtain in
the case ζ = 1

(F, H)0 = (−1)(gb1
+···+gbq−1

)(gf+p)
[

1
p!(q − 1)!

y0
bq−1

· · · y0
b1y

0
ap

· · · y0
a1

(fa1...ap
←
∂ zl)hlb1...bq−1

− (−1)(gf+p)(gl+gbq )

(p − 1)!q!
y0

bq
· · · y0

b1y
0
ap

· · · y0
a2

fa2...apl∂zlhb1...bq

]

def= y0
ap+q

· · · y0
a2

[F, H]a2...ap+q ,

where

d1z
a ≡ ya

1 = y0
bω

ba
1 .

The bracket [F, H] has the following symmetry property

[F, H] = −(−1)(gf+p)(gh+q)[H, F ]

and satisfies the Jacobi identity∑
(EFH)

(−1)(ge+s)(gh+q)[E, [F, H]] = 0.

Thus, we see that the formula (13) contains as particular cases quite a number of the
Schouten–Nijenhuis type brackets.

4 Conclusion

We give the recipe for the construction from a given Poisson bracket of the definite Grassmann
parity another bracket. For this construction we use the exterior differentials with different
Grassmann parities. We proved that the resulting Poisson bracket essentially depends on the
parity of the exterior differential in spite of these differentials give the same exterior calculus [1].
The recipe leads to the set of different generalizations for the Schouten–Nijenhuis bracket. Thus,
we see that the Schouten–Nijenhuis bracket and its possible generalizations are particular cases
of the usual Poisson brackets of different Grassmann parities (12). We hope that these generali-
zations will find their own application for the deformation quantization (see, for example, [7,14])
as well as the usual Schouten–Nijenhuis bracket.
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