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In the spirit of the recent work of Ibragimov [1] who adopted the infinitesimal method for
calculating invariants of families of differential equations using the equivalence groups, we
apply the method to evolution type equations of the form u; = f(z,u)uz. + g(x,u, uy).
We show that the equivalence Lie algebra admitted by this equation has two functionally
independent differential invariants of the second order.

1 Introduction

We consider evolution equations of the form
we = (@, Wity + 9,1, uy), (1)

A number of many special cases in this class of equations have been successfully used to model
physical problems. Such example is the nonlinear diffusion equation u; = [D(u)uy|,. Group
properties of this equation were studied by Ovsiannikov [2]. Other examples of such equations
that appear in the literature are u; = [g(x)D(u)uglz, ur = [g(z)D(w)uzle — K(u)ug, up =
(u™)gz + g(x)u™ + f(x)uuy, ete.

It can be shown that equations (1) admit equivalence transformation

2 = P(x), t' = cit + ca, v = R(x,u) (2)
with

c1 a1 Py

If we set P(z) =z + ep(x) and R(z,u) = u + e(x,u), we can write the above transformations
in infinitesimal form. That is, in the form
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where ¢!, €2 and 7 depend on t, z and u, while ¢ and v depend on ¢, x, u, uy, f and g, and
C is given by ¢ = D.(n) — us Do (¢4) — upzD.(£%). The operator D, is the total derivative with
respect to x.

We deduce that the class of equations (1) has an infinite continuous group of equivalence
transformations generated by the infinite-dimensional Lie algebra which is spanned by the ope-
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rators:
0 0
Y1:§7 Y_ta—fa—f—ga—ga
0 , 0 ”
Y(]ﬁ:qb(x)%_gbux f ,
0 0 9 0
Yy = (@, u) g + (Yo + Yutta) 5 — [wug (Yuutty + 2Vzutic + Voo f] 79" (4)

In this paper we calculate differential invariants of equivalence transformations of equa-
tions (1) by using the infinitesimal method for calculations of invariants of families of equations
developed in [3]. In the following three sections we consider the problem of classifying differential
invariants of equations (1) of zero, first and second order.

2 Differential invariants of order zero
We search for invariants of order zero. That is, invariants of the form
‘] = '](t7 Ty U, Ug, f7 g)
We apply the invariant test Y'(J) = 0 to the operators Y3, Y3, Y, and Y, and using the fact
that ¢(z) and 1(z,u) are arbitrary functions, we obtain J = const. Hence, equations (1) do not
admit differential invariants of order zero.
3 Differential invariants of first order
In order to determine differential invariants of the first order,
J = J(t, 2, u,us, £, 9, for fus Gy Gus Gus)

we need to consider the first prolongation of Y,

0 0 0 0 1o}
Yy =y
T T e Y b T B T g
where
:U’k:Dk(lu’)_fl“ﬁk(é2)_fubk(n)a kZ:[L‘, u,
Vk:Dk(V)_gZDk(gz)_guDk(n)_guka<C)a k:x7 U, Ug, (5)

where f)m Du and f)u, denote the total derivatives with respect to =, u and wu,:

A A B A 8+ A R
T = o xaf g:ta :L‘a:afx xuafu Gz gzuagu Gru, 3!]% )
- 0 (9 8 8 (9 3 8 6
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Using the formulae (5) and (6) we obtain the first extension of the generators Yi, Ya, Yy, Yy,
given by equations (4):

1 1 0 0 0 0

() Y1, YVQ():YQ_fm af, fuafu gma—gm_gua—gu_guggaguxa
0

V=Yt 20" + 6 ) gy + ¢fuaf

0 0 0
_"_ Uy n _'_um // — /+ ”Um w. +ux Z ” _"_ Z _|_ /uZ ,
(420" + 020" L = 928 + 6"t ) 5= + 0 fu =+ (8 + ) 5 -

0 0
(1) Yw fuw:r f fulbuﬁ

0

0gu

We note that Yl(") =Y). Hence for any order of differential invariants J; = 0.
Now from the differential invariant test Y(1)(.J) = 0, we get three identities

B=YM =0, E,=vY=0 E,=Y)=0. (8)
Since ¢(x) and v(x,u) are arbitrary functions, coefficients of ¢ in E4 = 0 and 1 in Ey = 0 give
Jr = Jy = 0. Now coefficients of Yyuu, Yeuu, Yuuw and Ypy give Jg, = Jg, = Jg = Jg,. = 0.

Coefficient of ¢ in Ey = 0 gives Jy, = 0 and coefficient of ¢, in Ey, = 0 gives J,,, = 0. Hence,
J = J(f, fu) and equations (8) read

0 0 0 0
Bi=— (1574 ) =0 Bo=2(1g+hpr )0 =0, Eu=fugtb.=0

If f., # 0 from the above relations we deduce that J¢, = Jy = 0 and therefore equations (1) do
not admit differential invariant of the first order. However the equation

fuzo (9)

is invariant under the group which is spanned by (7). That is,

YU dlhm=0 Y Uf)lm=0 Y U )lpm0=0 Y (f)lp—0 =0.

4 Differential invariants of second order

Now we determine differential invariants that depend on the second derivatives of f and g. Here
we need to calculate the second prolongation of (4). As in the previous case it is straightforward
to deduce that J; = J, = J, = 0. Hence,

J = J(Uza 1595 fa fuag:mguvguIa fzay fou, fuuagzzag:}cmgzuzaguuaguuzaguzuz)-
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Now the second prolongation of (4) reads

(2) _ 0 0 o
Y Tx TU uu xxr o Yruy T Yzur o
2 B T o e il 7
9 9 o
guua w guura uux guruma uxua:
YD =YD (267 f 136" )20 + (26 u + & fo) o + 20 fu
- 0
(iv) . /" ..
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Yy — (¥ f+2wf)af (w fut+tuf “/’f)af
0
u Y uu 2uuu — WYaxxxx — Yaxxzu
= (futbuu + 2futh )afw (“wzzef &) g =+ (“rweuf +- )5 —
0
0
Ty
s+ (b Vo)) 5o — (o + V) o (10
The invariant test produces three identities
B =Y,0())=0, Ey=Y(J)=0, E;=Y(J)=0. (11)
Coefficients of Yzzzz, Vezow, Yuwuuw and gz in E1/J = 0 give ']gm; - ']gzu = ']guu ']gg: =0
Hence,
J = J(u:cu fv g, fq:v fU7 Gus Guy fxxa fzuu fuu’gxug;aguuz)guzum)-
Equation F5 = 0 now reads
I+ 9Jg+ fodp, + fudpe + 9udgu + GuoJgu, + foad foo + foudfouw + Fuud g
From this first order partial differential equation we get 12 integrals
plzi pzzﬁ P3:& pr="20 py= T p@‘zﬁ
g’ f f g’ g’ f
p7=@ pgzM pg =Ty =Ty ey (12)
f M f M g ) g M g M X

Coefficient of 4, in Ey = 0 gives
Ipy +2Jpy =0,
where we have used the new variables p;. The above relation reduces the integrals by one:

b1, Dp2, P3, Ps5, Pe, D7, D8, Pio, P11, P12, G4 = 2]94 — P9. (13)
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From the coefficient of ¥, in Ey = 0 we get
Ipro +P12Jg, =0
and therefore we have the following 10 integrals
p1, P2, D3, D5, D6, D7, Dss D1, P12, T4 = G4 — P12Pio- (14)
Coefficient of 1, in Ey, = 0 gives
Ipro — P3Jpy — 2p7Jps — P8p, = 0
which produces the integrals
p1, P3, Ds, Ds, Pu, T4, G2 =p2+Dspi2, 6 =Dy —pePs, qr = pr+pspiz. (15)
Coefficient of 1., in Ey; = 0 produces
P1Ipy + P1p11Jpyy + P1psTps + papsdy + (P11 + pira — 2pip3)Jr, = 0

which implies the integrals

Dbs P11 p3ps T4 P11 b3
P3, P8, G2 q1, G5=— QU =-—, Te=q6+——), p4=—+—5 —2—. (16)
yai n n D1 p1 b1

We take the coefficient of 1, in Ey = 0,
2J4s + p3Jyy + 2030776 +2(q5 — q2)Juy = 0.
We obtain the integrals
P3, P8, Q2 qu, 5= —2q2q5 — {4, T7 =2q7 —p3gs, M6 = G5 — T6. (17)
Coefficient of 1y, in Ey = 0 gives
P3t6Sus + 2ps gy, + p3psdps =0

which produces the integrals

He
P3, q2, Ts, T7, Ti1 = DP3qi1 — 2ps, )\62178- (18)

Coefficient of v, in Ey = 0 gives the equation
p3Jp3 + 2r11Jr11 + T7Jr7 =0

from which we get the solutions

7 11
@, Ts5 A6, pr=-—, 1= —5. (19)
b3 p3

Solutions (19) satisfy Ey; = 0 for any arbitrary function 1(x,u). Now we use the identity
E4 = 0. Coefficient of ¢ gives

J7«5 +J e = 0
and therefore we have

a2, K7, M1l f5 =T5— Xe. (20)
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Coefficient of ¢” in E4 = 0 produces the equation
gy + 3y — 3420y = 0
which gives the integrals
1, Ar =27 —3q2,  As = 4ps + 3¢3. (21)
Finally equation Ey4 = 0 reads
(205, + Ay, )¢ = 0.

Hence we obtain the solutions

-5 (22)

J1 = paz, Jo

Now, using the sequence of integrals (12)—(22), we can write the forms of J; and J in terms

of the original variables, uyz, f, 9, fo, fus Gus Guss foz> four fuw, Grues Guugs Jueu,- W therefore
conclude that equation (1) has two invariants of the second order:

fuguzuz - 2ffuu
TR (23)
Jo = fg(_4u:%ffuu — 8y f fou — 4f foaw — 16 f gy

+ 8z f Guu, + 8fGru, + gucchg + 6ug fo fu + 209 fu — 8ug fugu, + 3fx2 — 8f2Gu,

= 89%u,u, + 495x)/(4uxffuu +4f fou — 3u1f5 — 3fefu— 2fuguz)2- (24)

In addition to the invariant equation f, = 0 (equation (9)) that we found in the previous
section, here we have also the following three invariant equations:

JuGupuy — 2 fuu =0, (25)
— 402 f fuu — 8ua f fou — A fra — 16f gu + 8ua f Guu, + 8f Gou, + 3ulfr

+ 6ty fo fu + 209 fu — 8ta fugu, + 3f7 — 8f2Gu, — 899usu, + 495, =0, (26)
Qg f fuu + A fou — Buafa — 3fefu — 2fugu, = 0. (27)

To show this we need to apply the second prolongation (10) of (4) to these equations. That is,
we have to show that

(@)oo =0, Y2 (@)lg=0=0, ¥ 7(0)lo=0 =0,

where ¢ is the left hand side of equations (25), (26) and (27).
We make the following remarks: If equation (1) is such that

1. All four equations (9), (25)—(27) hold, then it has no invariants. We note that if (9) holds,
then equations (25) and (27) are satisfied.

Equation (9) holds, then it has one invariant, Jo = 0.

Equations (26) and (27) hold, then it has one invariant, J;.

Equation (25) holds (but not (9)), then it has two invariants, J; = 0, Js.

Equation (26) holds, then it has two invariants, Jy, Jo = 0.

Equation (27) holds, then it has two invariants, Jy, J) = %2 =0.

SR
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Finally, we make a comment on the invariant equation f,, = 0. From this relation we deduce
that when two equations of the form (1) are connected by a point transformation, the corre-
sponding functions f(z,u) must both depend on u, or both do not depend on u. From this we
can deduce that there exists no point transformation that maps an equation of the form (1)
with f,, # 0 to the linear heat equation u; = u,,. In general, an equation of the form (1) with
fu # 0 cannot be linearised by a point transformation.

Example. We consider the integrable equation

U = ulugy (28)
and the class of equations

up = U Uy + g(z,u, ug). (29)

Both of these equations are special forms of (1). Setting f = u? and g = 0 into equations (23)
and (24) we find that equation (28) has invariants J; = —1 and J, = 1. From (23) and (24) we
deduce that equation (29) has invariants J; = —1 and Jy = 1 if it is of the form

ut—uum—i-Q(n 2)u" uy + k(x )uux—i-ndx

3n+4

W h(z)u T (30)

Now if we consider transformation (2), it can be shown that the most general form of (30)
(and consequently of (29)) that can be linked with (28) is

1 2 dk
~(n—2)u" "k + k(x )uuw—i——— nl (31)

. n
ut—uum—i-Q( g

In fact, it can be shown that the transformation
T /ef k(@)de qq. t—t, u s ef K@)dey 5

maps (28) into (31).

5 Remarks

We have shown that the class of equations (1) has no differential invariants of order zero and
order one. We have determined two functionally independent differential invariants of second
order. In order to produce higher order invariants, we need to follow the procedure as above by
considering higher order prolongations, or alternatively we can introduce the idea of invariant
differentiation. Details about invariant differentiation can be found in the book of Ibragimov [3].
We note that for the invariants (23) and (24) we need to have f, # 0. Hence in the case
where f, = 0, that is equation uy = f(z)uzy + g(,u, u;), needs to be considered separately.
However, by introducing a new space variable { = [ ﬁdx, this latter equation takes the form
up = uge + h(&, u,u¢). The problem of classification of differential invariants for the class of
equations uy = Uz + g(z,u, u,) will be considered in a separate article in the near future.
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