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The objective of the paper is to study the interface between the fluids having different vis-
cosities in their joint movement through the nonhomogeneous random scale-invariant porous
media. The surface tension and the force of gravity are not taken into account. Porosity and
permeability have pulsations from an extreme wide range of scales and logarithmic-normal
statistics. Statistical parameters of the interface are found. The problem is numerically
solved in a unit size cube with 2563 grid in spatial variables.

1 Introduction

The interface of oil displaced by water is unstable. This instability has the origin of diffe-
rent viscosities and explains the viscous fingering between fluids while the displacement takes
place [1]. Another origin of the complex interface is the fluctuations of permeability of the
porous media. Geological porous media are characterized by multiple-scale heterogeneities that
have a significant influence on the transport of water and oil. The permeability heterogenei-
ty is often identified as the main factor determining transport and dispersion of impurities in
the subsurface [2]. In this paper, both factors are studied and compared in a direct computer
experiment. We concentrate on them and do not discuss other important factors such as the
surface tension and the gravitational force. The physical properties of such media are simulated
by means of random fields. The probability distribution is simplified by the refined scaling
hypothesis by Kolmogorov [3]. This hypothesis is associated with the fractal properties of the
porous media that have a certain experimental support [4]. In particular, correlation functions
of the parameters are asymptotically described by power laws. This fact enables us to use the
scaling theory for modeling permeability and porosity.

2 Statement of problem

A displacement of a more viscous fluid (oil) by a less viscous one (water) in the 3D-scale-
invariant porous medium is considered. At a low Reynolds number, Darcy’s law gives the
velocity v(x) = −ε(x)∇p, where p is pressure, ε(x) is permeability. The incompressibility
condition brings about the equation for p:

∇ [ε (x)∇p (x)] = 0, (1)

where the permeability ε(x) is equal to ε1(x) if the first phase (water), is located at point x and
equal to ε2(x), if the second phase (oil) is located at this point x. The displacement of one fluid
by another one is displayed with passive particles which label the interface between fluids. The
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trajectories of particles that label the interface between fluids are calculated from the equations:

m (x)
dxi (t)
dt

= v(x), xi(0) = xi0, (2)

where i stands for the number of particle i = 1, . . . , N , m (x) is porosity. We solve equation (2)
using the pressure from equation (1) and find the new coordinates of our phases. For the next
time step we solve equation (1) with the new permeability coefficient ε(x). A more viscous fluid
(oil, solute) is displaced by a less viscous one (water). The ratio of permeabilities is determined
by the ratio between viscosities of phases. The medium does not change while the flow moves.
How does heterogeneity of a porous medium affect the average front coordinate, the variance of
width of the front, etc.?

For describing functions of permeability and porosity we use the scaling theory proposed by
Kolmogorov [3]. The full details of the scaling approach for the porous medium are considered
in [5]. Here, we only briefly outline such an approach. The fluctuations of ε(x), m (x) of various
sizes may be identified by a spatial smoothing at l → 0, ε(x, l) → ε(x), m (x, l) → m (x). We
assume that there exists such a minimum scale l0, that ε(x, l0) ≈ ε(x),m (x, l0) ≈ m (x).

The dimensionless field ψ(x, l, l′) = ε(x, l)/ε(x, l′) is similar to the dimensionless ratios of
fields according to Kolmogorov (1962). Namely, the field ψ(x, l, l′) is assumed to be translatory
homogeneous, isotropic and of the scaling symmetry. The latter means that ψ(x, l, l′) has the
same probability distribution as the field ψ(Kx,Kl,Kl′) where K is a positive number. The
field ψ(x, l, l′) has too many arguments. We define a simpler field having the same information.
To introduce such a field we use the following identity that holds by definition of ψ(x, l, l′):

ψ(x, l, l′′) = ψ(x, l, l′)ψ(x, l′, l′′).

Making l′ to be infinitesimal as opposed to l, we obtain a simpler field ϕ(x, l) = dψ(x,l,ly))
ldy |y=1

that has the same information as ψ(x, l, l′). The permeability ε(x) is expressed via ϕ(x, l) as

ε (x) = ε0 exp
[
−

∫ L

l0

ϕ(x, l)
dl

l

]
. (3)

Doing it in the same way for porosity, we obtain

m (x) = m0 exp
[
−

∫ L

l0

χ (x, l)
dl

l

]
, (4)

where L is the scale of the largest fluctuations.
We assume the scale invariance, spatial homogeneity and isotropy to be present for the

second centered correlation functions. Here we use a simple model, in which the statistical
distributions for ϕ(x, l), χ (x, l) are supposed to be Gaussian-distributed and delta-correlated
in the scale logarithm for x = y:

Φϕϕ
(
x,x,l, l′

)
=

〈
ϕ(x, l)ϕ(x, l′)

〉
c
= Φϕϕ

0 δ
(
ln l − ln l′

)
, (5)

where 〈 〉c denotes the central moment,

Φχχ
(
x,x, l, l′

)
=

〈
χ(x, l)χ(x, l′)

〉
c
= Φχχ

0 δ
(
ln l − ln l′

)
. (6)

The correlation between porosity and permeability is determined by the correlation between
ϕ(x, l) and χ(x, l):

Φϕχ
(
x,x, l, l′

)
=

〈
ϕ(x, l)χ(x, l′)

〉
c
= Φϕχ

0 δ
(
ln l − ln l′

)
. (7)

Thus, we do not violate the scale invariance of porosity and permeability. We consider a simple
model, when statistical distributions for ϕ(x, l), χ(x, l) are assumed to be Gaussian, and hence
distributions of porosity and of permeability are logarithmic-normal.



1392 E.P. Kurochkina and O.N. Soboleva

Figure 1. The interface between phases. The
ratio of viscosities ν = 1.

Figure 2. The interface between phases for the
ratio of viscosities ν = 0.01.

3 Results of numerical modeling

Equations (1), (2) are numerically solved in the cube with edges L0. A constant pressure is set
at the faces y = 0, y = L0: p (x, y, z) |y=0 = p1, p (x, y, z) |y=L0 = p2, p1 > p2. The pressure of
the other faces of the cube is set by a linear dependence in terms of y: p = p1 + (p2 − p1) y/L0.
The main filtration flow is directed along the axis y. For the numerical calculation we use dimen-
sionless variables. All lengths are measured in units of L0, the permeabilities being measured
in units of the less viscous phase ε01. Thus, it is sufficient to solve the problem in a unit size
cube with a unit pressure difference and ε01 = 1. First we calculate the field of porosity and
the field of permeability replacing integrals (3), (4) by the finite difference formula, in which it
is convenient to use the logarithm with base 2:

ε (x) = ε0j exp

[
− ln 2

0∑
k=−8

ϕ(x, τk)δτ

]
,

m (x) = m0 exp

[
− ln 2

0∑
k=−8

χ(x, τk)δτ

]
, (8)

where j = 1, 2, ε01 = 1, ε02 = µ1/µ2, µ1, µ2 are viscosities of phases, lk = 2τk ; τk = kδτ, δτ = 1
is the discretization step of the scale logarithm, τk = 0,−1, . . . , log2

1
256 = −8. We use a 2563

grid in spatial variables. The fields ϕ(x, lk) and χ(x, lk) are generated independently for every
scale lk because they are delta-correlated in terms of the scale logarithm. The common indices
of degree are summarized over the statistically independent layers. For every τk, we obtain the
two fields:

ϕ(x, τk) =

√
Φϕϕ

0

ln 2
ζ(x, τk) + 〈ϕ〉 ln 2,

χ(x, τk) =

√
Φχχ

0

ln 2

(
rζ (x, τk) +

√
1 − r2ς (x,τk)

)
+ 〈χ〉 ln 2,

where −1 ≤ r ≤ 1. The fields ζ(x, τk), ς (x, τk) are independent, Gaussian, having a unit
variance, zero average and the same correlation functions:

〈ζ(x, τi)ζ(y, τj)〉c = 〈ς(x, τi)ς(y, τj)〉c = exp

[
−(x − y)2

22τi
δij

]
. (9)



Numerical Simulation of Replacing Oil by Water 1393

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

t

1
2
3

<y> 

Figure 3. The average position of the front for
the different ratios of viscosities: 1 – ν = 1; 2 –
ν = 0.5; 3 – ν = 0.2.
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Figure 4. 1 – heterogeneous medium ν = 0.5;
2 – the constant permeability and porosity are
equal to mean values, ν = 0.5; 3 – heterogeneous
medium, ν = 0.2; 4 – constant porosity and per-
meability ν = 0.2.

Thus, we consider a simple correlation between the fields. The natural condition for the porosity
0 ≤ m(x) ≤ 1 is satisfied by the choice of parameters Φχχ

0 , 〈χ〉.
A particular structure of correlation functions enables us to present a common matrix as

product of four correlation matrices. These matrices have a relatively low dimension. This fact
allows us to apply the algorithm described in [6]. Equation (1) is solved by the iterative method.
In the present calculations, the two upper and the three lower layers are left empty, i.e. the
functions ϕ, χ in these layers are equal to zero. Two empty upper layers indicate to the fact
that the largest scale L = 1/8. This allows us to replace the probable mean quantities by the
space-averaged values. The three lower layers are also left empty to provide a good difference
approximation for equation (1).

The parameters of calculation are Φϕϕ
0 = 0.3, 〈ϕ〉 = 0.15, m0 = 1, Φχχ

0 = 0.05, 〈χ〉 = 0.7,
Φφχ =

√
0.3 ∗ 0.05, the coefficient correlation between porosity and permeability γ = 0.92, the

variance of permeability of the first phase is equal to 1.297, the mean porosity being approxi-
mately equal to 0.15. Evolution of the front depending on the ratio of viscosities ν is displayed
in Figs. 1, 21.

Fig. 1 shows the interface between the same phases ν = 1. In Fig. 2 we have the interface
between the phases for the ratio of viscosities ν = 0.01 (ν = µ1/µ2). The geometry of both
media and the moment of time are the same. The interface between fluids has an unstable
behavior and “viscous fingering” for the ν = 0.01. The numerical simulation shows that within
the domain of ratio of viscosities for oil 0.01 ≤ ν ≤ 1, the variances of the fronts strongly depend
on heterogeneity of the porous media. In the Hele–Shaw cell permeability heterogeneities are,
as a rule, not considered [1]. Fig. 3 shows average coordinates of the front depending on time
for ν = 0.5, 0.2. Such ratios of viscosities are typical of Siberian reservoirs. The comparison
of the average coordinates of the front in a heterogeneous medium with the coordinates of the

1Figures in colour will be available only in electronic version.
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Figure 5. The logarithm of variance of the front
along axis y for the different viscosities ratios: 1 –
ν = 1; 2 – ν = 0.5; 3 – ν = 0.2.
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Figure 6. 1 – The logarithm of average velocity
of the front for ν = 1.0; 2 – ν = 0.5; 3 – ν = 0.2.

front for a medium with constant permeability and porosity is displayed in Fig. 4.
The variances of width of the front for different ν are displayed in the logarithm coordinates

in Fig. 5. The slope angles α increase if the viscosities ratio decreases:

ν = 1, α = 1.56; ν = 0.5, α = 1.84; ν = 0.2, α = 2.24.

The time dependence of variance of the front is a power function of time with the index of
power α. This fact is a consequence of scale-invariance of medium.

The ratio of the longitudinal component and the transverse one of the diffusion tensor is
constant and approximately equal to 3.5 for ν = 1. (This value can also be evaluated by the
perturbation theory). Non-diagonal components of the tensor are small for our problem. For
ν = 0.5, the ratio of the longitudinal component and the transverse one calculated for water
at the moment tend is approximately equal to 5.0. The average velocities along the axis y are
displayed in Fig. 6.

4 Summary

We have considered 3-D model of displacement of immiscible fluids in fractal porous media. The
“viscous fingering” occurs, similar to the flow in a horizontal square Hele–Show cell, although we
do not consider the surface tension force. Different spatial moments of the front are calculated,
and their statistical characteristics are presented. Dispersion of the water front is described
by the second order diffusion tensor Dij . All components of Dij are computed. The value of
the transverse diffusion is investigated and compared to the longitudinal one, while statistical
parameters of the medium and viscosities of the fluids vary.
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