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We review computational techniques that can be used in the determination of fundamental
invariants of vector spaces of Killing tensors under the action of the isometry group. In
particular, for the first time in this study, we employ for these purposes the method of
moving frames introduced by Fels and Olver. Illustrative examples are provided.

1 Introduction

Conceived as an extension of classical invariant theory of homogeneous polynomials [1, 2], the
theory of algebraic invariants of Killing tensors has been introduced recently [3–10] as the study
of invariant properties of vector spaces of Killing tensors under the action of the isometry group.
According to the dictates of the mathematical structure of the classical theory, the theory of
algebraic invariants of Killing tensors shares many of its essential features. Thus, the pivotal
problem in both theories is the determination of the set of fundamental invariants for a given
vector space under the action of a group. Furthermore, in both theories, a solution to the
problem is a precursor to solving the intimately related problems of equivalence and finding
canonical forms (see [2, 7] for more details).

As is well known, the geometrical properties of Killing two-tensors play a vital role in the
Hamilton–Jacobi theory of orthogonal separation of variables [11–15] as well as in the field theory
(see, for example [16, 17]). In this spirit, the fundamental invariants of vector spaces of Killing
tensors have been effectively employed in classification problems arising in the Hamilton–Jacobi
theory [3, 4, 6–10]. It has also been shown that the fundamental invariants of Killing tensors of
higher valences can be applied to other classification problems of Hamiltonian mechanics [5].

The main aim of this article is to discuss computational techniques that can be employed
within the framework of the theory to determine the fundamental invariants of vector spaces of
Killing tensors defined on pseudo-Riemannian spaces of constant curvature.
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2 A glimpse into the theory of algebraic invariants
of vector spaces of Killing tensors

Assuming only a minimal familiarity with the classical invariant theory (see [2] for an introduc-
tion), this section describes how the basic concepts of the classical theory of algebraic invariants
of homogeneous polynomials can be naturally adapted to the study of vector spaces of Killing
tensors under the action of the isometry group I(M).

Let (M, g) be a pseudo-Riemannian manifold of constant curvature. We begin by defining
the concept of a Killing tensor (vector).

Definition 1. A Killing tensor K of valence p defined in (M, g) is a symmetric (p, 0) tensor
satisfying the Killing tensor equation

[K, g] = 0, (1)

where [ , ] denotes the Schouten bracket. When p = 1, K is said to be a Killing vector
(infinitesimal isometry) and the equation (1) reads LKg = 0, where L denotes the Lie derivative
operator.

In the case when (M, g) is a pseudo-Riemannian manifold of constant curvature, the di-
mension d of Kp(M) is determined by the Delong–Takeuchi–Thompson (DTT) formula d =
dimKp(M) = 1

n

(
n+p
p+1

)(
n+p−1

p

)
, p ≥ 1, where Kp(M) denotes the vector space of Killing tensor of

valence p defined on (M, g). In this study we treat Killing tensors as elements of their respective
vector spaces. This approach differs from the more conventional view of Killing tensors defined
on spaces of constant curvature as symmetrized sums of Killing vectors. Accordingly, taking
into account the DTT formula, a Killing tensor of valence p is an algebraic object determined
by its d parameters, where d is the dimension of the vector space Kp(M).

We have exploited this idea by making a natural link between the study of Killing tensors
and the classical invariant theory. Indeed, whenever the action of a group is defined properly
on a vector space, one can pose the question of determining the induced action of the group in
the space of the parameters of the vector space under consideration and then proceed to find
the functions of the parameters that remain unchanged under the action of the group (i.e. the
group invariants). Thus, for a fixed p ≥ 1, consider the corresponding vector space Kp(M) on
(M, g). It is spanned by d arbitrary parameters a1, . . . , ad, where d is determined by the DTT
formula. Alternatively, this fact can be established by solving the corresponding Killing tensor
equation (1) with respect to a fixed coordinate system. Then, the parameters a1, . . . , ad will
appear as constants of integration in the general form of the Killing tensor in Kp(M). The
action of the isometry group I(M) on Kp(M) induces transformation laws for the d parameters
a1, . . . , ad of the following form:

ã1 = ã1(a1, . . . , ad, g1, . . . , gr),
ã2 = ã2(a1, . . . , ad, g1, . . . , gr),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ãd = ãd(a1, . . . , ad, g1, . . . , gr), (2)

where d is given by the DTT formula, g1, . . . , gr are local coordinates on I(M) that parametrize
the group and r = dim I(M) = 1

2n(n + 1). Let Σ � R
d be the space of parameters a1, . . . , ad.

By analogy with the classical theory of invariants, we formulate the following problem.

Problem 1. Let Σ � R
d be the space determined by the d parameters a1, . . . , ad that define the

vector space Kp(M) in (M, g) for some fixed p ≥ 1. In the space of functions in Σ, describe
the subspace of all functions that remain fixed under the induced action of the corresponding
isometry group I(M).
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The functions having this property are called I(M)-invariants of the vector space Kp(M).
More specifically, they must satisfy the condition F (ã1, . . . , ãd) = F (a1, . . . , ad) under the trans-
formation laws (2) induced by the action of the isometry group I(M). Solving Problem 1 then
reduces to finding a set of fundamental invariants with the property that any other invariant is
a (analytic) function of the fundamental invariants. The Fundamental Theorem on invariants
of a regular Lie group action [2] determines the number of fundamental invariants required to
define the whole of the space of I(M)-invariants:

Theorem 1. Let G be a Lie group acting regularly on an m-dimensional manifold X with
s-dimensional orbits. Then, in a neighbourhood N of each point x0 ∈ M , there exist m − s
functionally independent G-invariants ∆1, . . . ,∆m−s. Any other G-invariant I defined near x0

can be locally uniquely expressed as an analytic function of the fundamental invariants through
I = F (∆1, . . . ,∆m−s).

In all of the examples studied to this point, the isometry group acts regularly on the corre-
sponding subsets Σ\{0}, where Σ is the space of the parameters of the vector space of Killing
tensors under consideration, with the origin a1 = a2 = · · · = ad = 0, being one of the orbits.

3 Computation of the fundamental I(M)-invariants

In this section we briefly describe the methods of computing fundamental invariants of vector
spaces of Killing tensors defined in pseudo-Riemannian spaces of constant curvature under the
action of the isometry group.

3.1 Method of moving frames

The method of moving frames introduced recently by Fels and Olver [18, 19] is a very useful
direct method for computing fundamental invariants. In this paper we use it for the first time
within the framework of the theory of algebraic invariants of Killing tensors. As the following
example shows, at least in some instances, it can be much more effective than the method
of infinitesimal generators (see below) which has been used in the cases already studied. For
example, consider the vector space NK2(R2) of non-trivial Killing tensors of valence two defined
in the Euclidean plane R

2 under the action of I(R2). Here “non-trivial” means that none of
the elements of NK2(R2) is a multiple of the corresponding metric tensor g: NK2(R2) = {K ∈
K(R2)|K �= �g, � ∈ R}. This is a five-dimensional vector space. Without loss of generality we
can assume any element of NK2(R2) has the following general form:[

a1 + 2a3y + a5y
2 a2 − a3x − a4y − a5xy

a2 − a3x − a4y − a5xy 2a4x + a5x
2

]
, (3)

where (x, y) is some fixed system of Cartesian coordinates in R
2 and ai, i = 1, . . . , 5 are arbitrary

parameters that determine the dimension of the vector space NK2(R2). In view of the standard
parametrization of the isometry group I(R2), we have the transformation of the coordinates
(x, y)

x̃ = Rθx + a, (4)

where Rθ =
[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2) and a = (a, b) ∈ R

2. The tensor transformation laws

induce the corresponding transformation laws (2) on the parameters appearing in (3):

ã1 = a1(cos2 θ − sin2 θ) − 4a2 sin θ cos θ + 2(aa4 − ba3) cos θ

− 2(ba4 + aa3) sin θ + a5(b2 − a2), (5)
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ã2 = a1 sin θ cos θ + a2(cos2 θ − sin2 θ) + (aa3 + ba4) cos θ + (aa4 − ba3) sin θ − a5ab, (6)
ã3 = a3 cos θ + a4 sin θ − a5b, (7)
ã4 = a4 cos θ − a3 sin θ − a5a, (8)
ã5 = a5. (9)

We immediately observe that ∆1 = a5 is a fundamental I(R2)-invariant. According to Theo-
rem 1, we must have in total 5 (the dimension of the vector space) − 3 (the dimension of the
orbits) = 2 fundamental invariants. (The fact that the orbits of the isometry group are 3-di-
mensional on the space Σ\{0} was established earlier [7, 10].) To find the second fundamental
invariant we employ the method of moving frames (see [2] for more details). Consider the
following coordinate cross-section K in the space Σ � R

5 defined by the parameters ai, i =
1, . . . , 5, K = {a2 = a3 = a4 = 0}. Next, we find the solutions to the normalization equations
ã2 = ã3 = ã4 = 0, to determine the moving frame map: γ : Σ → I(R2). Solving (7) and (8)
for a and b respectively, we get

a =
a4 cos θ − a3 sin θ

a5
, b =

a3 cos θ + a4 sin θ

a5
. (10)

Next, substituting the formulas (10) into (6) we obtain

tan 2θ = −2(a5a2 + a3a4)
a1a5 − a2

3 + a2
4

. (11)

Therefore we conclude that the equations (10) and (11) define in this case the moving frame
map γ : (a1, . . . , a5) → (a, b, θ). Finally, substituting (10) and (11) into the equation (5) and
using elementary trigonometric formulas, we obtain the second fundamental invariant

∆2 =

√
(a5a1 − a2

3 + a2
4)2 + 4(a5a2 + a3a4)2

a5
. (12)

Since ∆1 = a5 is also a fundamental invariant, we can conclude that the pair (∆1, ∆2) consti-
tutes a complete system of fundamental invariants in this case. We note that these results are
consistent with the results obtained in [10] by the method of infinitesimal generators. Hence, by
making use of Theorem 1 and employing the method of moving frames, we have solved Problem 1
for the vector space NK2(R2) and hence proven the following theorem:

Theorem 2. Any algebraic I(R2)-invariant I of the vector space NK2(R2) can locally be
uniquely expressed as an analytic function I = F (∆1, ∆2) of the fundamental I(R2)-inva-
riants (9) and (12).

We note that in this case the method of moving frames appears to be more effective in
comparison with the method of infinitesimal generators used previously to solve this problem.
More specifically, the fundamental invariants have been found by a direct algebraic method
without having to solve a system of PDEs.

Recall that non-trivial Killing tensors define orthogonal coordinate webs in R
2. From this

perspective, the invariant k2 = ∆2/∆1 is the square of the (half) distance between the foci in
the case when the corresponding Killing tensor gives rise to the elliptic-hyperbolic coordinate
web (see [7, 10]) for more details).

3.2 Method of infinitesimal generators

Let Kp(M) be the vector space of Killing tensors of valence p ≥ 1 defined on a pseudo-
Riemannian manifold M of constant curvature. Consider the action of the isometry group I(M)
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on Kp(M). The method of infinitesimal generators for finding fundamental invariants rests on
the following idea: One finds the infinitesimal generators of the Lie algebra i(M) of I(M) in the
space Σ determined by the parameters a1, . . . , ad of the vector space Kp(M), d = dimKp(M).
Since invariants are annihilated by the generators (Killing vectors) of the Lie algebra of the
isometry group, determining the fundamental invariants reduces to solving the corresponding
system of PDEs in the space Σ � R

d. To find the generators in Σ we employ the following tech-
nique. Consider Diff Σ, the space of all diffeomorphisms of Σ. It yields DiffKp(M), the space
of Killing tensors of valence p whose parameters are determined by all possible diffeomorphisms
of Σ. Thus, an element K̃ ∈ DiffKp(M) is a Killing tensor of valence p, whose d parameters
ã1, . . . , ãd are defined by a diffeomorphism of the coordinates a1, . . . , ad of Σ: ãi = ãi(a1, . . . , ad),
i = 1, . . . , d. Define now the following map π : DiffKp(M) → X (Σ), where X (Σ) is the space of
all vector fields on Σ, as follows:

π(K̃) =
d∑

i=1

ãi(a1, . . . , ad)
∂

∂ai
, i = 1, . . . , d, (13)

where K̃ ∈ DiffKp(M), a1, . . . , ad are the coordinates of the space Σ (see Section 2 for more
details) and ãi, i = 1, . . . , d determine K̃. Now let K ∈ Kp(M) be the general Killing tensor
determined by a1, . . . , ad of Σ (in essence, K is the solution of the corresponding Killing tensor
equation (1)) and Xi, i = 1, . . . , r, r = 1

2n(n+1) be the generators of i(M). Define the following
vector fields in X (Σ):

V i = π(LXiK), i = 1, . . . , r, (14)

where L denotes the Lie derivative operator. Note that the Killing tensors KXi = LXiK ∈
DiffKp(M), i = 1, . . . , r and so the vector fields V i ∈ X (Σ), i = 1, . . . , r are well-defined.
The vector fields V i represent the generators Xi, i = 1, . . . , r in X (Σ) in the sense that they
satisfy the same commutator relationships. This fact can be established on a case by case basis.
It demonstrates that the Lie algebras generated by the vector fields Xi and V i, i = 1, . . . , r
are in fact isomorphic and the vector fields V i, i = 1, . . . , r can be used in determining the
fundamental invariants. Indeed, it follows from this fact that I(M)-invariants are annihilated
by the generators of the corresponding Lie algebra. The following example will illustrate the
procedure. Consider the six-dimensional vector space K1(R3) which consists of all Killing vectors
in Euclidean space R

3. The most general element of K1(R3) in terms of Cartesian coordinates
is given by

K = (a1 + a5z − a6y)
∂

∂x
+ (a2 + a6x − a4z)

∂

∂y
+ (a3 + a4y − a5x)

∂

∂z
. (15)

The generators of the Lie algebra K1(R3) in terms of Cartesian coordinates are given by

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
(translations),

R1 = y
∂

∂z
− z

∂

∂y
, R2 = z

∂

∂x
− x

∂

∂z
, R3 = x

∂

∂y
− y

∂

∂x
(rotations). (16)

They satisfy the following commutator relations.

[Xi, Xj ] = 0, [Xi, Rj ] = −εijkXk, [Ri, Rj ] = −εijkRk, (17)

where εijk is the permutation tensor and i, j, k = 1, 2, 3. Applying the technique described above
(see (14)) we find the corresponding vector fields in X (Σ), where Σ � R

6 is determined by the
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parameters a1, . . . , a6 of (15)

U1 = a6
∂

∂a2
− a5

∂

∂a3
,

U2 = −a6
∂

∂a1
+ a4

∂

∂a3
,

U3 = a5
∂

∂a1
− a4

∂

∂a2
,

V 1 = a3
∂

∂a2
− a2

∂

∂a3
+ a6

∂

∂a5
− a5

∂

∂a6
,

V 2 = −a3
∂

∂a1
+ a1

∂

∂a3
− a6

∂

∂a4
+ a4

∂

∂a6
,

V 3 = a2
∂

∂a1
− a1

∂

∂a2
+ a5

∂

∂a4
− a4

∂

∂a5
. (18)

Note that the vector fields (18) satisfy the same commutator relations (17)

[U i, U j ] = 0, [U i, V j ] = −εijkUk, [V i, V j ] = −εijkV k. (19)

Therefore, in view of (17) and (19), we have established the following result:

Lemma 1. The Lie algebras i(R3) � K1(R3) and iΣ(R3) are isomorphic, where the Lie algebra
iΣ(R3) is spanned by (18).

Next, we observe that the coefficient matrix of the generators (18)




0 a6 −a5 0 0 0
−a6 0 a4 0 0 0
a5 −a4 0 0 0 0
0 a3 −a2 0 a6 −a5

−a3 0 a1 −a6 0 a4

a2 −a1 0 a5 −a4 0




(20)

has rank four almost everywhere. Therefore we conclude that the isometry group has 4-
dimensional orbits in the space Σ\{0}, and so, in view of Theorem 1, we have 6 (the dimension
of the group) − 4 (the dimension of the orbits) = 2 fundamental invariants. Indeed, taking
into account the result of Lemma 1 and employing the method of undetermined coefficients (see
Section 3.3) we solve the system of linear PDEs generated by (18)

V i(F ) = 0, U i(F ) = 0, i = 1, 2, 3 (21)

and arrive at the following result:

Theorem 3. Any algebraic I(R3)-invariant I of the vector space K1(R3) can locally be uniquely
expressed as an analytic function I = F (∆1, ∆2), where

∆1 = a2
4 + a2

5 + a2
6, ∆2 = a1a4 + a2a5 + a3a6 (22)

are the corresponding fundamental I(R3)-invariants.

As expected, we have obtained two fundamental invariants; they can be effectively employed
in a classification of the elements of the vector space K1(R3) [3].
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3.3 Method of undetermined coefficients

One typically employs the method of characteristics when solving systems of linear PDEs, such
as (21). Unfortunately, this procedure does not always yield a result, and, in particular, becomes
intractable when applied to (21). However, an alternate solution method, namely the method
of undetermined coefficients has helped to alleviate the difficulties. Thus, based on previous
problems that we have solved so far, it has been conjectured that there always exists a set
of fundamental invariants consisting of homogeneous polynomials in a1, . . . , ad. We can take
advantage of this by constructing a suitable trial function for the system of PDEs. This is the
general idea of the method of undetermined coefficients.

The method works as follows. We construct a general homogeneous polynomial in a1, . . . , ad

of some fixed degree with coefficients to be determined. Substituting this trial polynomial into
the system of PDEs leads to a system of linear equations in the undetermined coefficients. Thus,
any non-trivial solution of this linear system yields a solution of the PDE system, and hence an
I(M)-invariant of Kp(M). This process can be repeated with higher degree polynomials until
the required number of functionally independent invariants asserted by Theorem 1 is derived. In
this way, a set of fundamental I(M)-invariants which are functionally independent is obtained.

It turns out that the resulting linear system is overdetermined. There are approximately
r = 1

2n(n + 1) times as many linear equations as there are unknowns. This is understandable
since there are r infinitesimal generators in the system. We also emphasize that the linear system
is sparse, in the sense that the corresponding coefficient matrix of the system consists primarily
of zero entries. As a result, the linear system can easily be solved using a symbolic sparse linear
solver.

We have successfully implemented this algorithm in Maple to solve the resulting system of
linear equations. In particular, we have computed the complete set of fundamental invariants
for a number of vector spaces of Killing tensors, notably for those where the method of charac-
teristics has failed [3]. For the amusement of the reader, we remark that in the space K2(R3),
an arbitrary quintic polynomial in a1, . . . , a20 must be constructed, which results in a linear
system of approximately 250 000 equations in 50 000 unknowns with about 1 000 000 non-zero
entries. The computation took approximately ninety hours to complete on a 300 MHz Sun
Ultra-5. The exact details of this calculation are discussed in [3]. This paper also examines how
a more restrictive trial function can be constructed which further enhances the efficiency of the
algorithm.

4 Method of reducing invariants

In some instances, fundamental I(N)-invariants of a vector space Kp(N) can be obtained from
fundamental I(M)-invariants of Kp(M), where N ⊂ M . For example, a complete set of funda-
mental I(S2)-invariants for K2(S2) has been obtained [4] from the fundamental I(R3)-invariants
of K2(R3) derived in [3], based on the result of the Delong theorem [13] describing explicitly the
elements of a general space K2(Rn+1), n ≥ 2 which are the elements of K2(Sn).

5 Conclusion

We have demonstrated how the method of moving frames [18, 19] can be used to solve the
problem of finding the complete sets of fundamental algebraic invariants of vector spaces of
Killing tensors under the action of the isometry group. In the study of Killing tensors defined
on low-dimension pseudo-Riemannian spaces of constant curvature the method appears to be
more effective than the method of infinitesimal generators. However, in finding fundamental
invariants of vector spaces of Killing tensors of higher valences defined on spaces of higher



1086 R.J. Deeley, J.T. Horwood, R.G. McLenaghan and R.G. Smirnov

dimensions the above mentioned methods prove to be less effective. This prompts one to use the
method of undetermined coefficients combined with a computer algebra system such as Maple
to solve the problem of finding complete sets of fundamental I(M)-invariants for the vector
spaces Kp(M).
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