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Using special quasigraded Lie algebras we obtain new hierarchies of integrable equations
in partial derivatives admitting zero-curvature representations. In particular, we obtain
generalization of Landau–Lifshitz equation for the Lie algebras so(2n), sp(n) and gl(n).

1 Introduction

Integrability of equations of 1 + 1 field theory and condensed matter physics is based on the
possibility to represent them in the form of the so-called zero-curvature equations [1, 2]:

∂U(x, t, λ)
∂t

− ∂V (x, t, λ)
∂x

+ [U(x, t, λ), V (x, t, λ)] = 0. (1)

The most productive interpretation of zero-curvature equation (see [6,5]) is to consider them as
a consistency condition for a set of a commuting Hamiltonian flows on the dual space to some
infinite-dimensional Lie algebra g̃ of matrix-valued function of λ written in the Euler–Arnold
(generalized Lax) form:

∂L(λ)
∂tl

= ad∗
∇Il(L(λ))L(λ),

∂L(λ)
∂tk

= ad∗
∇Ik(L(λ))L(λ), (2)

where L(λ) ∈ g̃∗ is the generic element of the dual space, ∇Ik(L(λ)) ∈ g̃ is algebra-valued
gradient of Ik(L(λ)), and the “Hamiltonians” Ik(L(λ)), Il(L(λ)) belong to the set of mutually
commuting with respect to the natural Lie–Poisson bracket functions on g̃∗.

Consistency condition of two commuting flows given by equations (2) yields equation (1) with
U ≡ ∇Ik, V ≡ ∇Il, tk ≡ x, tl ≡ t. Hence in order to construct new integrable hierarchies in
the framework of the described approach it is necessary to have some infinite-dimensional Lie
algebra g̃ admitting an algorithm of construction of infinite family of commuting Hamiltonians
on its dual space. Such the algorithm is famous Kostant–Adler scheme [3, 4].

In our previous paper [9] we proposed a multiparametric family of special quasigraded Lie
algebras g̃A parametrized by numerical matrices A. The main feature of the constructed Lie
algebras is the property to admit Kostant–Adler scheme, i.e. to admit decomposition into the
sum of two subalgebras g̃A = g̃+

A + g̃−A. In the present paper we use them in order to construct
new sets of integrable equations in partial derivatives. In the result we obtain an infinite set
of equations (1) with g̃±A-valued U − V pairs constituting so-called integrable hierarchies. We
concentrate our attention on one of these hierarchies connected with the subalgebras g̃−A.

In the present paper we show that explicit form of the corresponding equations depends on
the form of the additional covariant constraint on the matrices entering into the U -operators.
We consider the simplest U -operators and the simplest covariant matrix constraint:

U = λ−1S, S2 =
1
4
1.
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Such covariant constraints exist for the cases of underlying simple (reductive) matrix Lie al-
gebras g are so(2n), sp(n) and gl(n). In the result we obtain the following equation on the
matrix S:

∂S

∂t
=

[
S,

∂2S

∂x2

]
+

1
2

∂

∂x
(AS + SA) +

[
S,

[
S,

∂S

∂x

]]
A

+
1
2
[S, AS + SA]A. (3)

We show that this equation is the direct matrix generalization of the Landau–Lifshiz equation,
where the role of the anisotropy tensor is played by the matrix A. In the case of g = so(4) it
could be reduced to the standard Landau–Lifshitz equation [15,5].

The volume of the paper gives no possibility to consider other equations connected with
algebras g̃A. Interested reader may consult our papers [10, 11] for further examples.

2 Special quasi-graded algebras

In this section we describe a new class of infinite-dimensional Lie algebras g̃ that could be
used to generate classical integrable systems. These algebras satisfy the following integrability
requirements (IR):

• (IR1) they possess infinite number of algebraically independent invariants of coadjoint
representation,

• (IR2) they are decomposable into the direct sum of two subalgebras: g̃ = g̃− + g̃+,

• (IR3) subalgebras g̃+, g̃− possess infinite set of embedded ideals J±n of finite co-dimen-
sions.

2.1 General construction

Definition 1. Infinite-dimensional Lie algebra g̃ is called Z-quasigraded of type (p, q) if it admits
the decomposition:

g̃ =
∑
j∈Z

gj , such that [gi, gj ] ⊂
q∑

k=−p

gi+j+k.

The following proposition holds true [9]:

Proposition 1. Let g̃ be Z-quasi graded of type (0, 1), or (1, 0). Then g̃ satisfies conditions
(IR2) and (IR3).

So our aim in this section will be a construction of Z-quasigraded algebras of type (0, 1).
For this purpose we will deform Lie algebraic structure in loop algebras. We will introduce into
L(g) = g ⊗ Pol (λ, λ−1) new Lie bracket:

[X ⊗ p(λ), Y ⊗ q(λ)]F = [X, Y ] ⊗ p(λ)q(λ) − F (X, Y ) ⊗ λp(λ)q(λ), (4)

where X, Y ∈ g, p(λ), q(λ) ∈ Pol (λ, λ−1), [ , ] in the righthand side of this identity denotes
ordinary Lie bracket in g and map F : g× g → g is skew. It is evident by the very construction
that the Lie algebras with the so defined bracket are Z-quasigraded Lie algebras of type (0, 1)
with the quasigrading being defined by degrees of the spectral parameter λ.

The following Propositions answer the question of when bracket (4) satisfy the Jacobi identity:
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Proposition 2. For bracket (4) to satisfy the Jacobi identities the cochain F should satisfy the
following two requirements:

(J1)
∑

c.p. {i,j,k}
(F ([Xi, Xj ], Xk) + [F (Xi, Xj), Xk]) = 0,

(J2)
∑

c.p. {i,j,k}
F (F (Xi, Xj), Xk) = 0.

In the case of classical matrix Lie algebras it is possible to give an explicit construction
of large (multiparametric) family of cochains F , that satisfy conditions (J1)–(J2). Let g be
hereafter a classical matrix Lie algebra of the type gl(n), so(n) and sp(n) over the field of
the complex or real numbers. We will realize the algebra so(n) as algebra of skew-symmetric
matrices: so(n) = {X ∈ gl(n)|X = −X�} and the algebra sp(n) as the following matrix algebra:
sp(n) = {X ∈ gl(n)|X = sX�s}, where n is an even number, s ∈ so(n) and s2 = −1.

The following Proposition holds true:

Proposition 3. Let g be a classical matrix Lie algebra over the field K of complex or real
numbers. Let us define the numerical (K-valued) n × n matrix A of the following type:

1) A is arbitrary for g = gl(n),
2) A = A� for g = so(n),
3) A = −sA�s for g = sp(n).

Then maps FA : g × g → g of the form FA(X, Y ) = XAY − Y AX are correctly defined skew-
symmetric maps that satisfy conditions (J1)–(J2).

Remark 1. Cocycle FA defines a second Lie bracket in the finite-dimensional Lie algebras g,
that is compatible with the standard one. This fact was noticed in the paper [12] and was
used to construct compatible Poisson brackets on the finite-dimensional Lie algebras g. The
idea to use the same cocycle to generate infinite-dimensional Lie algebras with Kostant–Adler
decomposition was proposed in [9] as a natural generalization of semi-geometric construction
of [7, 8] of special quasigraded Lie algebras on the higher genus curves.

Definition 2. We will denote the Lie bracket in g defined by the cocycles FA by [ , ]A, the
corresponding finite-dimensional Lie algebra by gA and the infinite-dimensional Lie algebra with
the Lie bracket given by (4) by g̃A.

The Lie bracket in the algebra g̃A will have the following form:

[X(λ), (λ)]FA
≡ [X(λ), Y (λ)]A(λ) = [X(λ), Y (λ)] − λ[X(λ), Y (λ)]A, (5)

where X(λ), Y (λ) ∈ L(g) = g ⊗ Pol (λ, λ−1), A(λ) ≡ 1 − λA, and we extend brackets [ , ] and
[ , ]A from the Lie algebra g to the Lie algebra of g-valued functions L(g) in a natural way.

Now we can introduce convenient bases in the algebras g̃A. Due to the fact that we are
dealing with matrix Lie algebras g, we will denote their basic elements as Xij . For example, for
the case g = gl(n) we will have that Xij = Iij , where (Iij)ab = δaiδbj for the case g = so(n) we
will have that Xij = Iij − Iji etc. Let

Xm
ij ≡ Xij ⊗ λm

be the natural basis in g̃A. Commutation relations (5) in this basis have the following form:

[Xr
ij , X

m
kl ]FA

=
∑
p,q

Cpq
ij,klX

r+m
pq −

∑
p,q

Cpq
ij,kl(A)Xr+m+1

pq , (6)

where Cpq
ij,kl and Cpq

ij,kl(A) are the structure constants of the Lie algebras g and gA respectively.

Remark 2. Algebra g̃A could be realized also in the space of special matrix valued functions of λ
with an ordinary Lie bracket [ , ]. Nevertheless we consider realization in the space g⊗Pol (λ, λ−1)
with the “deformed” bracket to be the most convenient.
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2.2 Coadjoint representation and its invariants

In this subsection we define dual spaces, coadjoint representations and their invariants for the
Lie algebras g̃A. Let us at first explicitly describe the dual space g̃∗A of g̃A. For this purpose we
will define the pairing between g̃A and g̃∗A in the following standard way:

〈X, L〉 = res
λ=0

Tr (X(λ)L(λ)). (7)

The generic element of the dual space L(λ) ∈ g̃∗A is written as follows:

L(λ) =
∑
k∈Z

∑
i,j=1,n

l
(k)
ij λ−(k+1)X∗

ij . (8)

The following proposition is true [9]:

Proposition 4. The coadjoint action of g̃A on g̃∗A is written as follows:

ad∗
X(λ) ◦ L(λ) = A(λ)X(λ)L(λ) − L(λ)X(λ)A(λ), (9)

where X(λ), Y (λ) ∈ g̃A, L(λ) ∈ g̃∗A.

Remark 3. Note that linear spaces g̃A and g̃∗A do not coincide as g̃A-modules. Moreover,
rigorously speaking, they also do not coincide as linear spaces, because g̃∗A contains formal
power series, and g̃A, by the very definition, consists of the Loran polynomials.

Proposition 4 has the following important corollary:

Corollary 1. Let L(λ) be the generic element of g̃∗A. Then the functions

Im
k (L(λ)) =

1
m

res
λ=0

λ−(k+1)Tr
(
L(λ)A(λ)−1

)m
. (10)

are invariants of the coadjoint representation of g̃A.

Remark 4. The matrix A(λ)−1 ≡ (1−λA)−1 has to be understood as a power series in λ in the
neighborhood of 0 or ∞: A(λ)−1 = (1+Aλ+A2λ2+· · · ) or A(λ)−1 = −(A−1λ−1+A−2λ−2+· · · ).

2.3 Lie–Poisson structure

Let us define the Poisson structures in the space g̃∗A using the pairing 〈 , 〉 defined above. It
defines Lie–Poisson (Kirillov–Kostant) bracket on P (g̃∗A) in the following standard way:

{F (L(λ)), G(L(λ))} = 〈L(λ), [∇F (L(λ)),∇G(L(λ))]〉, (11)

where ∇F (L(λ)) =
∑
k∈Z

n∑
i,j=1

∂F

∂l
(k)
ij

Xk
ij , ∇G(L) =

∑
m∈Z

n∑
k,l=1

∂G(λ)

∂l
(m)
kl

Xm
kl .

From the Corollary 1 and standard arguments the next statement follows:

Proposition 5. Functions Im
φ (L(λ)) are central for the Lie–Poisson bracket (11).

Let us explicitly calculate Poisson bracket (11). It is easy to show that for the coordinate
functions l

(m)
ij these brackets will have the following form:

{l(n)
ij , l

(m)
kl } =

∑
p,q

Cpq
ij,kll

(n+m)
pq −

∑
p,q

Cpq
ij,kl(A)l(n+m+1)

pq . (12)

It is evident, that this bracket determine in the space of linear functions {l(n)
ij } a structure

of the Lie algebra isomorphic to g̃A. That is why the corresponding Poisson algebra possesses
decomposition into the direct sum of two Poisson subalgebras or by other words subspaces (g̃±A)∗

are Poisson.
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3 Infinite-dimensional Hamiltonian systems
via K-A admissible Lie algebras

In the previous section we have constructed infinite-dimensional Lie algebras g̃A that have a de-
composition into direct sum of two subalgebras and possess infinite set of invariants of coadjoint
representation, i.e. admit so-called Kostant–Adler scheme. In the first subsection of this section
we apply Kostant–Adler scheme to g̃A in order to construct an infinite set of mutually com-
muting ( with respect to the natural Lie–Poisson bracket ) functions on the infinite-dimensional
subalgebras g̃±A. In the second subsection we will obtain zero-curvature type equations with
g̃±A-valued U − V pairs.

3.1 Integrable Hamiltonian systems connected with algebras g̃±
A

Let L∓(λ) ≡ ∑
i,j=1,n

L∓
ij(λ)Xji =

∑
k∈Z±

∑
i,j=1,n

l
(k)
ij λ−(k+1)Xji be the generic elements of the spaces

(g̃±A)∗. Let us consider restriction of the invariant functions {Im
k (L(λ))} onto these subspaces.

Note, that although Poisson subspaces (g̃±A)∗ are infinite-dimensional, all functions {Im
k (L±(λ))}

are polynomials, i.e. after restriction to (g̃±A)∗ no infinite sums appear in their explicit expressions.
Corresponding Hamiltonian equations are written as:

∂L∓
ij(λ)

∂tmk
= {L∓

ij(λ), Im
k (L∓(λ))}. (13)

The following important theorem holds true:

Theorem 1. (i) Time flows defined by Hamiltonian equations (13) mutually commute.
(ii) Hamiltonian equations (13) are written in the “deformed” Lax form:

∂L∓(λ)
∂tmk

= A(λ)Mm
k (λ)L∓(λ) − L∓(λ)Mm

k (λ)A(λ), (14)

where Mm
k (λ) = ∇Im

k (L∓(λ)) ≡ ∑
s∈Z±

n∑
i,j=1

∂Im
k

∂l
(s)
ij

Xs
ij is an algebra-valued gradient of Im

k (L∓(λ)).

(Proof of the theorem follows from the standard framework of the Kostant–Adler scheme [4].)

Remark 5. In this subsection we have obtained Hamiltonian systems of the Euler–Arnold type
on the special infinite-dimensional Lie algebras possessing infinite number of the commuting
integrals of motion. These Hamiltonian systems are “mechanical” because they are described
by ordinary differential equations. Nevertheless we can consider our dynamical variables l

(p)
ij

to be functions of all time variables tm±
k and using the commutativity of all time flows obtain

differential identities on functions l
(p)
ij (tm±

k ) that coincide with the integrable equations in partial
derivatives. For this purpose in the next subsection we will derive zero-curvature equations.

3.2 “Deformed” zero curvature equations

In this section we will obtain zero curvature-type equations as compatibility conditions for the
set of the commutative Hamiltonian flows constructed in the previous section. The following
theorem holds true:
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Theorem 2. Let infinite-dimensional Lie algebras g̃A, g̃±A, their dual spaces and polynomial
Hamiltonians Im

k (L±(λ)), In
l (L±(λ)) on them be defined as in previous sections. Then algebra-

valued gradients of these functions satisfy the “deformed” zero-curvature equations:

∂∇Im
k (L±(λ))
∂tn±l

− ∂∇In
l (L±(λ))
∂tm±

k

+ [∇Im
k (L±(λ)),∇In

l (L±(λ))]A(λ) = 0. (15)

(Proof follows from the commutativity of two time flows defined by equations (14).)

Remark 6. By means of other realizations of g̃A deformed zero-curvature equations can be
rewritten in the form of the standard zero-curvature equations, but in this case corresponding
U − V pairs will be more complicated as functions of the spectral parameter λ.

Theorem 2 provides us with an infinite number of g̃±A-valued U − V pairs that satisfy zero
curvature-type equations. The latter are non-linear equations in the partial derivatives on the
dynamical variables – matrix elements of the matrices L±(λ). In the terminology of [2] equations
generated by the infinite set of U −V pairs are called “integrable in the kinematic sense”. In the
next subsections we will consider the simplest examples of such integrable equations and their
hierarchies.

Now let us explain the technique of obtaining integrable equation in partial derivatives start-
ing from zero-curvature equations. Let us at first note that in the described approach no “space”
variable x is a priori singled out: all times tm±

k are equivalent. Fixation of the “space” flow is
equivalent to the fixation of integrable hierarchy. For this purpose one should fix a Hamiltonian
that generate x-flow. For the case of integrable systems, connected with algebras g̃±A, this choice
yields fixation of dynamical variables. In more details, for the dynamical variables in this case
serve the matrix elements of ∇Im

k (L∓(λ)), where the Hamiltonian Im
k (L∓(λ)) is chosen to gen-

erate an x-flow. Using zero-curvature conditions one can express matrix elements of all other
matrix gradients ∇In

l (L∓(λ)) via these dynamical variables and their derivatives with respect
to the “space” coordinate. Substituting these expressions back to zero-curvature condition we
obtain the desired equation in partial derivatives on the matrix elements of ∇Im

k (L∓(λ)).

4 Matrix generalization of L-L hierarchy

In this section we will obtain integrable hierarchies of differential equations in partial derivatives,
admitting a zero curvature type representation (15) with the values in g̃−A.

Let us consider dual space (g̃−A)∗. Its generic element has the following form:

L+(λ) =
∑
k<0

∑
i,j=1,n

l
(k)
ij λ−(k+1)Xji = L(−1) + λL(−2) + λ2L(−3) + λ3L(−4) + · · · , (16)

where L(−k) ≡ ∑
i,j=1,n

l
(−k)
ij Xji. Let us now calculate the Hamiltonians Im

k (L+(λ)). In order for

the Hamiltonians Im
k (L+(λ)) to be polynomials we have to expand expression A(λ)−1 in the

power series in the neighborhood of zero:

A(λ)−1 = 1 + Aλ + A2λ2 + · · · .

From the results of the of the previous section it follows that the matrix gradients of Hamiltonians
Im
k (L+(λ)) satisfy “deformed” zero-curvature equation (15). We will be interested in the two

simplest Hamiltonians of the set I2
k(L+(λ)). By the direct calculations we obtain for them the

following expressions:

I2
0 (L+(λ)) = 1/2 Tr

(
L(−1)

)2
, I2

1 (L+(λ)) = Tr
(
A

(
L(−1)

)2) + Tr
(
L(−1)L(−2)

)
. (17)
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The corresponding matrix gradients are:

∇I2
0 (L+(λ)) = L(−1)λ−1,

∇I2
1 (L+(λ)) = L(−1)λ−2 +

((
AL(−1) + L(−1)A

)
+ L(−2)

)
λ−1. (18)

As it follows from the said above, in order to fix an integrable hierarchy we should choose
the Hamiltonian that generates an x-flow. In order to choose the simplest hierarchy we have to
choose the Hamiltonian with the simplest matrix gradient. That is why we will take for such
Hamiltonian the function I2

0 (L+(λ)), putting t2+
0 ≡ x; ∇I2

0 (L+(λ)) ≡ U(x, λ), ∇Im
k (L+(λ)) ≡

V m
k (x, λ), m, k > 0 as the basic U − V pairs that generate this hierarchy. In this case the role

of the dynamical variables is played by the matrix elements of the matrix L(−1).
Let us obtain an explicit form of the simplest equation of the hierarchy described above. For

this purpose we have to choose a Hamiltonian that generates the “time” flow in the simplest
possible way. We take for such Hamiltonian the function I2

1 (L+(λ)), i.e. t ≡ t2+
1 . In the result

we obtain that zero-curvature equation (15) is equivalent the following λ-independent equations:

∂S

∂t
− ∂M

∂x
= [S, M ]A, (19a)

∂S

∂x
= [S, M ], (19b)

where S ≡ L(−1), M ≡ L(−2) +
(
AL(−1) + L(−1)A

)
.

In order to obtain equations in partial derivatives for the dynamical variables – matrix ele-
ments of the matrix S, it is necessary to solve equation (19b), i.e. to express M via S and Sx

and then substitute this expression into equation (19a). We will illustrate this procedure by the
simplest, but most interesting example.

Let us now consider the case of the higher-rank algebras. In this case in order to solve
equation (19b), i.e. in order to obtain one matrix equation in partial derivatives instead of two
equations (19) it is necessary to impose additional constraints on the matrix S. Let g = gl(n),
so(2n) or sp(n) and for the matrix S to satisfy G-invariant constraint:

S2 =
α

4
1. (20)

This constraint means that S belongs to the degenerated coadjoint orbits of G of the following
type: Gl(n)/GL(p) × GL(q), SO(2n)/Gl(n) or SP (n)/GL(n). On this orbits we may solve
equation (19b) in the following way:

M =
1
α

[
S,

∂S

∂x

]
+ M ′, where M ′ ∈ ker adL.

Ambiguity connected with the existence of ker adS is removed by the requirement that the
constraint (20) is consistent with equations (19). It is easy to show, that for M ′ = 1/2(AS+SA)
the constraint (20) is consistent with equation (19), i.e.

(
∂S2

∂x

)
|S2= α

4
1 = 0 and

(
∂S2

∂t

)
S2= α

4
1

= 0.

Resulting matrix equation acquires the following form:

∂S

∂t
=

1
α

[
S,

∂2S

∂x2

]
+

1
2

∂

∂x
(AS + SA) +

1
α

[
S,

[
S,

∂S

∂x

]]
A

+
1
2
[S, AS + SA]A, (21)

where S2 = α
4 1. In the case α = 1 we obtain equation (3). In the limit A → 0 this equation

goes to standard higher-rank generalization of Heisenberg magnet equation [13,14].
Let us now show, that this equation is direct matrix generalization of the well-known Landau–

Lifshitz equation. For this purpose we consider the following example:
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Example. Let g = so(4). and matrix S satisfy G-invariant constraint (20) with α = −1. In
this case it is easy to show that matrix S can be written in the form:

S =




0 −s3 s2 s1

s3 0 −s1 s2

−s2 s1 0 s3

−s1 −s2 −s3 0


 ,

where three-component vector �s belongs to S2 = SO(3)/SO(2) = SO(4)/GL(2):

〈�s,�s 〉 = 1/4.

As a result of the special form of matrix S the second and third item of the right-hand side of
equation (21) are eliminated, and it could be rewritten as equation for the vector �s as follows:

∂�s

∂t
=

[
�s × ∂2�s

∂x2

]
+

[
�s × J(�s )

]
.

It coincides with the well-known Landau–Lifshiz equation (here J = 1/4
(
Â2 − 2a4Â

)
, Â =

diag (a1, a2, a3)).
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