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Existence of the ferromagnetic long-range order is proven for Gibbs classical lattice systems
of linear oscillators with a strong polynomial pair nearest neighbor ferromagnetic potential.

1 Introduction

Mathematical theory of phase transitions began its quick development half a century ago by
describing critical properties of the Ising-type finite valued spin systems in terms of a contour
technique [1]. This technique gave rise to Pirogov–Sinai (PS) theory, based on a knowledge
of ground states, which allows to calculate a phase diagram at low temperatures, and can be
successfully applied not only to classical spin systems with finite number of ground states but
also to quantum ones. Generalization of the PS theory to Gibbs lattice systems with discrete
or continuous set of ground states, such as systems of rotators and oscillators, characterized by
continuous variables associated to lattice sites of the hypercubic lattice Z

d, demands a profound
combinatorial and probabilistic technique. Such a technique was proposed in [2] for linear lattice
oscillator systems with nearest neighbor interaction. In this important paper the intuitive idea
that the number of phases is determined by the number of global minima of the polynomial
external field was justified. The technique of this paper was used also in proving of existence
of an order parameter (the ground state expectation value of the squared absolute value of the
Higgs field) in the SU(n) lattice Higgs gauge field model [3]. In the infinite gauge interaction
limit the Euclidean action, i.e. the potential energy of the Gibbs system, is reduced to the
potential energy of oscillator system from the previous paper.

If one deals with classical systems of oscillators interacting with spins or fermions having
simple self-interaction then, integrating out the variables corresponding to the spins and fermions
in the partition function, one obtains an effective lattice oscillator system. Such an effective
oscillator system is derived in the stationary quantum Holstein model.

To describe a phase diagram of a Gibbs system with a continuous set of ground states one has
at first to look at decrease of correlations and then find long-range order (lro) and the associated
order parameter. For different nearest neighbor lattice anisotropic systems with nearest neighbor
(n-n) interaction, including linear oscillator systems, occurrence of lro was established with
the help of the generalized Peierls argument in [4]. Lro means that there is no decrease of
correlations. For high temperatures or weak coupling there is always a decrease of correlations for
usual interactions. The order parameter always has a jump at critical values of the temperature
or a coupling constant, i.e. it is a discontinuous function of these parameters. This fact can often
be attributed to a breakdown of a discrete symmetry, for instance, Z2 symmetry associated to
a change of signs of all (infinite) spin variables when potential energy is an even function.

Since general oscillator systems are quite important there emerged a necessity to generalize
the Peierls argument to non-nearest neighbor interactions. This argument has been already
generalized for the linear oscillator system appeared in the stationary Holstein model in [5] but
the technique of this paper gave no hint how to do this in a general case.
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2 Peierls argument and lro

The Peierls argument is based on the contour bound for the Gibbs average on a compact con-
nected set Λ (hypercube)

〈
∏

〈x,y〉∈Γ

χ+
x χ−

y 〉Λ ≤ e−|Γ|E ,

where the contour energy E > 0 is independent of Λ and Γ, Γ is the set of nearest neighbors
with left and right sides in Γ belonging to different sides of a contour γ that is a completely
connected (without holes) set of faces of completely connected union of unit cubes, centered
at lattice sites, i.e. Γ is a set of nearest neighbors associated to γ, |Γ| = 2|γ| is the number of
lattice sites in Γ or twice the hyper-area of the contour γ, γ is closed if the faces adjacent to the
boundary of Λ are added,

χ+
x (qΛ) = χ(0,∞)(qx), χ−

x (qΛ) = χ(−∞,0)(qx), qx ∈ R,

χ(a,b) is the characteristic function of the open interval (a, b). qx may be one of the component
of a many-component oscillator or rotator.

For classical linear oscillator systems with the potential energy U and the inverse temperatu-
re β the Gibbs average is given by

〈FX〉Λ = Z−1
Λ

∫
FX(qX)e−βU(qΛ)dqΛ =

∫
FX(qX)ρΛ(qX)dqX , qX = (qx, x ∈ X),

ρΛ(qX) = Z−1
Λ

∫
e−βU(qΛ)dqΛ\X , ZΛ =

∫
e−βU(qΛ)dqΛ.

Here the integrations are performed over R|Λ|, R|X|, R|Λ\X| and ρΛ are the correlation functions,
where |X| is the cardinality (number of sites) of X.

When E diverges at zero temperature or infinite strength of nearest neighbor ferromagnetic
interaction (coupling constant) then the Peierls argument yields inequality [4,6] for sufficiently
low temperature or large coupling constant

〈χ+
x χ−

y 〉Λ ≤ ae−2dE . (1)

where a is a positive constant independent of Λ. This leads immediately to ferromagnetic lro
for unit spins sx, where a′ is independent of Λ, inequality 〈m2

Λ〉Λ ≥ a′ and non-triviality of the
order parameter

mΛ = |Λ|−1
∑
x∈Λ

sx.

in the thermodynamic limit, i.e. Λ → Z
d. This order parameter is an analog of the Ising

magnetization.
Indeed, from χ

+(−)
x = 1

2 [1 ± sx] one obtains

4〈χ+
x χ−

y 〉Λ = 1 + 〈sx〉Λ − 〈sy〉Λ − 〈sxsy〉Λ.

For systems invariant under the transformation of changing signs of the oscillator variables the
third and the second terms in the right-hand side of latter equality are equal to zero and

〈sxsy〉Λ = 1 − 4〈χ+
x χ−

y 〉Λ.

The average in the right-hand side of this equality is arbitrarily small due to (1) and the unit
spin lro occurs.
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To derive (1) one has to insert

1 =
∏
l∈Λ

(χ+
l + χ−

l ) =
∑

sΛ,sx=±1

∏
l∈Λ

χsl
l

into the left-hand side of the contour bound. The sum over spin configurations is equivalent to a
sum over contours γx,y separating x, y which may end on the boundary of Λ and be non-closed
(the resummation over spin configurations outside of the set of nearest neighbors Γ built on the
contour γ should be performed). That is, the left-hand side of (1) is bounded by∑

γx,y∈Λ

〈χ+
x χ−

y

∏
x′,x′′∈Γ(γx,y)

χ+
x χ−

x′〉Λ ≤
∑

γx,y∈Λ

〈
∏

x′,x′′∈Γ(γx,y)

χ+
x′χ

−
x′′〉Λ ≤

∑
γ

〈
∏

x′,x′′∈Γ(γ)

χ+
x′χ

−
x′′〉Λ,

where γ is a closed contour. The sum over the closed contours is bounded by the right-hand
side of (1) [7, Lemmas 5.3.5–6].

From the Frohlich–Lieb argument [4] one derives the following inequality for oscillator systems
an arbitrary positive r

〈σxσy〉Λ ≥ r2〈sxsy〉Λ − 〈σ2
xσ2

y〉
1
2
Λ − 4, σx(qΛ) = qx ∈ R.

For systems with potential energy satisfying super-stability and regularity conditions [7, 12] the
second term in the right-hand side of the inequality is uniformly bounded in Λ and unit spin lro
implies occurrence of the ferromagnetic oscillator lro

〈σxσy〉Λ ≥ a′′ > 0,

where a′′ does not depend on Λ. This, of course, means non-triviality of the oscillator order
parameter

MΛ = |Λ|−1
∑
x∈Λ

σx.

The subtle point is that the contour bound has to hold for systems with non-zero nearest-
neighbor ferromagnetic interaction.

3 Results

Let us consider the linear oscillator system with the potential energy (an even function)

U(qΛ) =
∑
x∈Λ

u(qx) +
∑

〈x,y〉∈Λ

φ(qx, qy) + U ′(qΛ), qx ∈ R,

where u is the external field which is a bounded below even polynomial of 2n-th degree (2 ≤
n ∈ Z)

φ(qx, qy) = −g(qk
xql

y + ql
xqk

y ), ptk + l = 2n0,

u does not depend on g, U ′ is expressed as a finite sum of products q
lj
xj with negative coefficients

and U satisfies the super-stability and regularity conditions which almost guaranteed existence
of the thermodynamic limit. g is the strength of the ferromagnetic nearest-neighbor interaction.
There is an remarkably simple derivation of the contour bound, proposed in [8] for the case
n0 = 1, which is based on the fact that the Gibbs average satisfies GKS inequality (generalized
Griffiths inequality) [9] and the bound

χ+
x χ−

y ≤ e−
gβ
2

(σk
xσl

y+σl
xσk

y ). (2)
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This bound follows from

χ+
x χ−

y = e−
gβ
2

(σk
xσl

y+σl
xσk

y )e
gβ
2

(σk
xσl

y+σl
xσk

y )χ+
x χ−

y ≤ e−
gβ
2

(σk
xσl

y+σl
xσk

y )χ+
x χ−

y ≤ e−
gβ
2

(σk
xσl

y+σl
xσk

y ).

Here one takes into account that σx ≥ 0, σy ≤ 0. The latter inequality is employed for the proof
of the contour bound as follows

〈
∏

〈x,y〉∈Γ

χ+
x χ−

y 〉Λ ≤ 〈e
− gβ

2

∑
〈x,y〉∈Γ

(σk
xσl

y+σl
xσk

y )

〉Λ

=

(
〈e

gβ
2

∑
〈x,y〉∈Γ

(σk
xσl

y+σl
xσk

y )

〉Λ[Γ]

)−1

≤ e
− gβ

2

∑
〈x,y〉∈Γ

〈(σk
xσl

y+σk
yσl

y)〉Λ[Γ]

= eEΓ .

where 〈·, ·〉Λ[Γ] is the average corresponding to the potential energy

UΓ(qΛ) = U(qΛ) +
g

2

∑
x,y∈Γ

(qk
xql

y + ql
xqk

y ).

In latter line we applied the Jensen inequality. Taking into account that the Gibbs average is
a monotone increasing function in interaction (a consequence of the GKS inequality) we obtain

EΓ ≥ E|Γ|, E = βg〈σkσ′l + σlσ′k〉,
where

〈σkσ′l + σlσ′k〉 = Z−1(2)
∫

(qk
1ql

2 + ql
1q

k
2 )e−βu(q1,q2)dq1dq2,

Z(2) =
∫

e−βu(q1,q2)dq1dq2, u(q1, q2) = u0(q1) + u0(q2) − g
(
qk
1ql

2 + ql
1q

k
2

)
,

k, l are positive integers, k = 2s − 1, l = 2(n0 − s) − 1, i.e. k + l = 2n0 and β is the inverse
temperature. This expression for E is the generalized BF contour bound.

We show [10] that E diverges at infinity in g and that means that the unit spin and oscillator
lro occur in the system at sufficiently large g. We establish that

qk
xql

y + ql
xqk

y = q2n0
x + q2n0

y − (qx − qy)2Q(qx, qy),

where Q is a homogeneous positive polynomial. This means that the effective external potential
u(q) − gq2n0 has minima whose depth depends on g. This representation implies that ground
states are ferromagnetic.

More interesting systems are described by finite-range U ′ which has non-ferromagnetic terms.
In this case the above arguments are not useful. Let us consider the case

φ(qx, qy) = g0(qx − qy)2n1Q′(qx, qy), g0 = g
ξ

2(n−n0) = z−ξ, u(q) = u0(q) − gq2n0 ,

where u0 is a bounded below even polynomial with 2n degree, Q′ is the positive symmetric
even homogeneous polynomial with the degree 2n2, n2 < n − n1 and Q(1, 1) = 1. The case
of non-positive translation invariant U ′ small for large g and Q′ = 1, n1 = 1, n0 = 1, g0 = g,
u0 = ηq2n was considered in [6, 10–11].

A derivation of the contour bound was based on the superstability bound for the rescaled
correlation function (the variables are rescaled by g−

1
2 ) translated by the minimum e0 of the

rescaled external field ug and the analog of (2)

χ+(qx)χ−(qy) ≤ exp{β[Qg(qx, qy) − e0]}, (3)



1478 W. Skrypnik

where

Qg(qx, qy) = e−1
0

[
(qx − qy)2 +

4
3
(∣∣q2

x − e2
0

∣∣+ ∣∣q2
y − e2

0

∣∣)] .

It is derived easily from two inequalities (R = e0, c = βe−1
0 )

χ+(qx)χ−(qy) ≤ e−c[R2−(qx−qy)2], |qx|, |qy| ≥ 2−1R,

χ+(qx)χ−(qy) ≤ e−c[R2− 4
3
(|q2

x−R2|+|q2
y−R2|)], |qx|, |qy| ≤ 2−1R.

For |qx| ≤ R
2 , |qy| ≥ R

2 the second term in the expression for Q is not less than cR2.
More precisely, we demand that the following super-stability and regularity conditions hold

U(qΛ) ≥
∑
x∈Λ

u−(qx), u−(q) = u(q) − ζv0(zq) − ζ0, z = g
− 1

2(n−1) ,

|W ′(qX ; qY )| ≤
∑

x∈X, y∈Y

Ψ′(|x − y|) (v0(z1−nqx) + v0(z1−nqy)
)
, v0(q) =

n−1∑
j=1

q2j ,

where ζ, ζ0 are positive constants, Ψ′ ∈ L1(Zd) and

W ′(qX ; qY ) = U ′(qΛ) − U ′(qY ) − U ′(qX), Λ = X ∪ Y.

The second term in the expression for u− guarantees that the contribution of the non-positive
part of U ′ is small for large g.

Let ρΛ∗ (qX), U∗, u∗, u−∗ denote, respectively, the rescaled and translated by e0, correlation
functions, potential energy, potentials u and u− and put. From the translation invariant cha-
racter of the Lebesque measure it follows that ρΛ∗ is expressed in terms of U∗. In our method we
have to rely on the following important theorem [6].

Theorem 1. For the correlation functions ρΛ∗ the following superstability bound is valid

ρΛ
∗ (qX) ≤ exp

{
|X|e∗(g) − β

[
U+
∗ (qX) +

∑
x∈X

u+
∗ (qx)

]}
,

where

u+
∗ = u−

∗ − 3εv0, ε = z2n(n−1),

e∗(g) depends neither on oscillator variables nor Λ, U+∗ is the positive part of U∗ generated by
a pair potential and for arbitrary δ > 0 and sufficiently large g

δe0 ≥ e∗(g).

From (3) and the superstability bound it follows that for e0 > 1 the contour bound holds
with

E = βe0 − e∗(g) + 2 ln I∗
(
g, Q0

)
,

where

I∗(g, Q0) =
∫

e−β[u+∗ (q)−e−1
0 Q0(q;e0)]dq, Q0(q; e0) =

4
3
|q(q + 2e0)|.
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The term with U+∗ in the super-stability bound plays an important role: it cancels the term
generated by the first term in the expression for Qg. It is not difficult to see that ln I∗(g, Q0)
diverges at infinity in g as δe0, where δ > 0 is arbitrary small. That is, E diverges in g at infinity
as e0, which is proportional to g

n
2(n−1) , and this proves occurrence of lro. If one uses the usual

Ruelle superstability [12, 13] bound without the term U+∗ in its right-hand side then the first
term in Qg yields an additional term βe−1

0 q2 under the sign of the exponent in the expression
for I∗ and the method fails.

By the similar arguments we prove occurrence of lro for the above pair potential φ and non-
translation invariant U ′ satisfying the superstability and regularity conditions guaranteeing that
non-ferromagnetic part of U ′ is small at large g [14]. We also establish how g0 has to depend on g
in order to preserve lro. g0 should not be very small to permit U+∗ to cancel the contribution of
the first term in the expression for Qg in and it cannot be very large because it has to permit the
rescaled and translated by e0 ferromagnetic n-n interaction to satisfy the uniform in g regularity
condition.

Resume. Our results show that the ferromagnetic lro in lattice linear oscillator systems
occurs only if a depth of the effective potential and the strength of the polynomial ferromagnetic
n-n interaction are large and correlated and the non-ferromagnetic part of the potential energy
is sufficiently small.
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