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Symmetry properties in quantum, classical and semiclassical mechanics are considered. Ge-
ometric structures in the semiclassical (Maslov complex-WKB) theory are investigated. In-
finitesimal properties of semiclassical symmetry transformations are discussed.

1 Introduction

Semiclassical approximation is widely used in quantum mechanics and field theory. Many dif-
ferent approaches to constructing semiclassical theories (functional integral approach, operator
approach etc.) have been developed. However, the most appropriate for mathematical justifi-
cation approach is based on direct substitution of the wave function to the quantum evolution
equation.

Historically, the WKB wave function was the first substitution that obeyed the Schrödinger
equation in the semiclassical approximation. Now, many different semiclassical substitutions
(arised in the Maslov theory of wave packets, in the Maslov theory of Lagrangian manifolds
with complex germs etc) to the Schrödinger equation are known. The simplest one is the wave
packet function which is specified by classical variables (numbers: S – phase, Pi – momenta,
Qi – coordinates) and quantum function f specifying a shape of the wave packet.

Generally, a semiclassical theory may be viewed as follows. A semiclassical state is a point
on the space of a bundle (“semiclassical bundle”), which can be denoted as (X, f), where X is
a classical state (for ordinary quantum mechanics, X = (S, P,Q) and f is a quantum state in
the given classical background). Set of all {X} may be considered as a base of the bundle, while
f belongs to a Hilbert space FX , which may be generally X-dependent.

If the quantum theory model is symmetric under a Lie group, the corresponding semiclassical
theory should be also symmetric. This means that the symmetry Lie group acts on the semi-
classical bundle; an automorphism of the bundle corresponds to each element of the Lie group
and the group property is satisfied.

When one is interested whether the quantum theory is symmetric under a Lie group, provided
that the corresponding classical theory is symmetric, a first step to solve the problem is to
investigate the corresponding semiclassical theory. Quantum anomalies may be investigated
even in the semiclassical level.

The purpose of the talk is to investigate the properties of the semiclassical mechanics sym-
metric under Lie groups. The following problems are to be discussed: infinitesimal properties;
correspondence between Lie groups and algebras in the semiclassical mechanics; properties of
semiclassical gauge theories; applications to quantum field theory.

2 Symmetries in classical and quantum mechanics

There are many classical and quantum systems with symmetries. The simplest example of
the symmetry transformation is evolution. Group of Poincaré transformations is also a typical
example of symmetry group. More complicated symmetries (such as gauge) are also known.



924 O.Yu. Shvedov

Although the mathematical formalism of quantum mechanics differs from the classical one,
and the spaces of states are quite different, the symmetry notions are similar. For example,
the evolution is viewed as a transformation mapping the initial state to the state at time t.
In quantum mechanics (see, for example, [3]) it is an unitary operator Ût = e−iĤt acting in
the Hilbert space H (quantum state space); classically, it is a symplectic transformation of the
classical state space (phase space) generated by a Hamiltonian vector field (see, for example, [1]).

The comparison of classical and quantum symmetries is presented in Table 1.

Table 1. Symmetries in classical and quantum mechanics.

Classical mechanics Quantum mechanics

State space Symplectic manifold M (X = (p, q)) Hilbert space H
Symmetry trans-
formation under
Lie group G

g ∈ G �→ ug : M → M is smooth
symplectic transformation;
ug1g2 = ug1ug2 ; ue = 1

g ∈ G �→ Ûg : H → H is unitary
operator; Ûg1g2 = Ûg1Ûg2 ; Ûe = 1

Constructing
transformations
for g(t) = etδg,
δg belongs to
the Lie algebra

ug(t) takes the initial condition for
equation

dX(t)
dt

= ∇[δg](X(t)), X(t) ∈M

to the solution of the Cauchy prob-
lem: ug(t) : X(0) �→ X(t); ∇[δg](X)
is Hamiltonian vector field onM

Ûg(t) = exp[−iĤ[δg]t] takes the ini-
tial condition for equation

i
dψ

dt
= Ĥ[δg]ψ, ψ(t) ∈ H

to the solution of the Cauchy prob-
lem Ûg(t) : ψ(0) �→ ψ(t); Ĥ[δg] is
self-adjoint operator in H

Properties
of infinitesimal
generators

For operator ∇[δg] = (∇[δg])i ∂
∂Xi ,

[∇[δg1];∇[δg2]] = −∇[δg1; δg2]

[Ĥ[δg1]; Ĥ[δg2]] = −iĤ[δg1; δg2]

3 What is semiclassical approximation?

It follows from Table 1 that main notions of classical and quantum mechanics are different.
However, both theories describe nature. They should not contradict each other then; quantum
systems should be interpreted from the classical viewpoint under certain conditions.

Such a correspondence is possible, provided that quantum theory depends on the parameter h,
and h→ 0. This is a “small parameter” of the semiclassical expansion. It is proportional to the
Planck constant. The dependence of self-adjoint generator Ĥ of the symmetry transformation
e−iĤt on h should be as follows:

Ĥh =
1
h
H

(
x,−ih ∂

∂x

)
, x ∈ R

n.

The definition of function of non-commuting operators x and −ih ∂
∂x can be found in [4].

Therefore, the equation to be investigated as h→ 0 reads

ih
∂ψt(x)
∂t

= H

(
x,−ih ∂

∂x

)
ψt(x). (1)

Historically, the first approximate solution of equation (1) was (see, for example, [3]) the WKB
solution of the form

ψt(x) = ϕt(x)e
i
h

St(x). (2)

Substituting expression (2) to equation (1), one obtains the Hamilton–Jacobi equation for St(x)
and the transport equation for ϕt(x).
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Now, a lot of approximate solutions for equation (1) are known. For example, there is the
Maslov substitution [4, 5] of the form:

ψt(x) = const e
i
h

St
e

i
h

P t(x−Qt)f t

(
x−Qt

√
h

)
≡ (Kh

St,P t,Qtf t)(x), (3)

with St ∈ R, P t ∈ R
n, Qt ∈ R

n, f t ∈ S(Rn). The normalizing factor should be chosen to be
const ∼ h−n/4 in order to make the norm ‖ψt‖ to be of the order O(1).

One finds by the direct calculation that the wave packet ψt approximately satisfies equa-
tion (1) under conditions

dSt

dt
= P tdQ

t

dt
−H(Qt, P t), (4)

dQt
j

dt
=
∂H

∂Pj
(Qt, P t),

dP t
j

dt
= − ∂H

∂Qj
(Qt, P t), (5)

i
∂f t(ξ)
∂t

=
∑
js

[
1
2

1
i

∂

∂ξj

∂2H

∂Pj∂Ps

1
i

∂

∂ξs
+ ξj

∂2H

∂Qj∂Ps

1
i

∂

∂ξs
+

1
2
ξj

∂2H

∂Pj∂Ps
ξs

]
f t(ξ). (6)

Let us compare the substitutions (2) and (3) at fixed time moment t. One can notice that the
width of the WKB wave function is of the order O(1); the same conclusion is valid for its Fourier
transformation as well. On the other hand, the Maslov wave packet (3), as well as its Fourier
transformation, is of the width O(

√
h) being small as h→ 0. This means that the uncertainties

of coordinates and momenta are of the order O(
√
h). The quantum state (3) can be interpreted

as a classical particle with coordinates Qt ∈ R
n and momenta P t ∈ R

n then.
It is remarkable that all known semiclassical solutions (see [4]) of equation (1) (including

WKB) can be constructed [6] as superpositions of the Maslov wave packets (3):

ψ(x) = const
∫
dαe

i
h

S(α)e
i
h

P (α)(x−Q(α))f

(
α,
x−Q(α)√

h

)
, α ∈ R

k. (7)

It happens that the state (7) is nontrivial, only if the Maslov isotropic condition

∂S

∂αa
=
∑

j

Pj
∂Qj

∂αa
(8)

is satisfied. Otherwise,

‖ψ‖ = O(h∞).

Under condition (8), one should choose const ∼ h−n+k
4 , and

(ψ,ψ) 	
∫
dαdξf∗(α, ξ)

∏
a

2πδ


∑

j

{
∂Pj

∂αa
ξj − ∂Qj

∂αa

1
i

∂

∂ξj

} f(α, ξ). (9)

Notice also that the wave function (7) is not small only in the vicinity (of the width
√
h) around

the k-dimensional surface {Q(α)}.

4 Geometry of semiclassical mechanics

The wave-packet semiclassical solutions (3) can be interpreted geometrically as follows [7]. First
of all, notice that the state Kh

S,P,Qf can be viewed as a point on a bundle (“semiclassical
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bundle”). Its base X is a classical phase space extended by adding a new variable S; it is
X = R

2n+1 = {X = (S, P,Q)}. All fibres FX = L2(Rn) = {f} being Hilbert spaces of quantum
states in a given classical background X ∈ X are identical.

The evolution transformation takes the initial data (X0 = (S0, P 0, Q0), f0) to the solution of
the Cauchy problem for system of equations (4)–(6) (Xt = (St, P t, Qt), f t):

Xt = utX
0, f t = Ut(Xt ← X0)f0.

It is an automorphism of the semiclassical bundle, since the evolution of X does not depend
on f .

Classical geometric structures appear in the semiclassical theory as follows. The wave func-
tions

Kh
Xtf t ≡ Kh

St,P t,Qtf t, (10)

Kh
Xt+hδXt(f t + hδf t) ≡ Kh

St+hδSt,P t+hδP t,Qt+hδQt(f t + hδf t) (11)

should both be approximate solutions of equation (1) as h→ 0, provided that (Xt + hδXt, f t +
hδf t) satisfies the system (4)–(6). However, as h→ 0,

Kh
Xt+hδXt(f t + hδf t) 	 e−iωXt [δXt]Kh

Xtf t, (12)

with

ωX [δX] =
∑

j

PjδQj − δS, (13)

so that both functions (10) and (12) may be approximate solutions only if

ωXt [δXt] =
∑

j

P t
j δQ

t
j − δSt = const. (14)

Analogously, one finds

Kh
Xt+

√
hδXt(f

t +
√
hδf t) = constKh

XteiΩXt [δXt]f t, (15)

with

(ΩX [δX]f)(ξ) =
∑

j

(
δPjξj − δQj

1
i

∂

∂ξj

)
f(ξ), (16)

so that the operator (16) should take solutions of equation (6) to solutions, i.e.:

ΩXt [δXt]Ut(Xt ← X0) = Ut(Xt ← X0)ΩX0 [δX0]. (17)

Thus, the introduced 1-forms ω (number-valued) and Ω (operator-valued) enter to important
relations (14) and (17), i.e. they are conserved under time evolution. Here δXt is any solution
of variation system for equations (4), (5), i.e.

ut(X0 + δX0) 	 Xt + δXt.

Another important property is

[ΩX [δX1]; ΩX [δX2]] = idωX(δX1, δX2).
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The superposition state (7) of the form

ψ(x) = const
∫
dαKh

X(α)f(α) (18)

may be viewed as a k-dimensional surface on the semiclassical bundle {(X(α), f(α))}; the Maslov
isotropic condition (8) and inner product formula (9) can be rewritten as

ωX

[
∂X

∂αa

]
= 0, (19)

(ψ,ψ) 	
∫
dα

(
f(α),

∏
a

2πδ
(

ΩX

[
∂X

∂αa

])
f(α)

)
. (20)

The comparison of geometric properties of classical, quantum and semiclassical mechanics is
presented in Table 2.

Table 2. Classical, quantum and semiclassical mechanics.

Classical mechanics Quantum mechanics Semiclassical mechanics

State space Symplectic
manifold

Hilbert space Semiclassical bundle: base –
symplectic manifold (classical
states); fibres – Hilbert spaces
(quantum states in classical
background)

Geometric
structures

Symplectic 2-form Inner product 1-form on base (“action”);
operator-valued 1-form on base
(values are operators in fibre);
inner products in fibres

Symmetry
transformations

Lie group acts
on manifold

Lie group is
represented by
unitary operators

Lie group is represented by
automorphisms of the bundle

5 Semiclassical symmetries and their infinitesimal properties

Symmetry group G should act on the semiclassical bundle as a group of automorphisms. This
means that for each g ∈ G classical symmetry transformation ug : X → X is specified; the
properties

ue = 1, ug1g2 = ug1ug2 (21)

should be specified. Unitary operators Ug(ugX ← X) : FX → FugX such that

Ug1g2(ug1g2X ← X) = Ug1(ug1g2X ← ug2X)Ug2(ug2X ← X) (22)

are also specified. The geometric structures (1-forms ω and Ω) should conserve under symmetry
transformations. Therefore, if

ug(X + δX0) = ugX + δXg + · · · ,

one should have

ωugX [δXg] = ωX [δX0], (23)
ΩugX [δXg]Ug(ugX ← X) = Ug(ugX ← X)ΩX [δX0]. (24)
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Properties (23) and (24) provide conservation of Maslov isotropic condition (19) and inner
product (20) for superposition states (18).

Consider now the infinitesimal properties of the semiclassical group transformations [8]. Let
the semiclassical bundle be trivial (i.e. FX = F . For g(t) = exp[tδg], transformations ug(t) are
constructed similarly to the classical theory (Table 1): ug(t) takes the initial condition for the
equation

dX(t)
dt

= ∇[δg](X(t)), X(t) ∈ X (25)

to the solution at time t. Here ∇[δg](X) is a Hamiltonian vector field. The unitary operator
Ug(ugX ← X) takes the initial condition for the equation

i
df(t)
dt

= H[δg|X(t)]f(t), f(t) ∈ F (26)

to the solution at time t:

Ug(t)(ug(t)X ← X) : f(0) �→ f(t).

Here H[δg|X] is a self-adjoint X-dependent operator in F .
The infinitesimal analog of the group property (22) is

[i∇[δg1]−H[δg1|X]; i∇[δg2]−H[δg2|X]] = i(i∇[δg1; δg2]−H[[δg1, δg2]|X). (27)

Invariance of 1-forms implies that

∇[δg]ω = 0, (28)
(∇[δg]Ω)X [δX] = i[ΩX [δX];H[δg|X]]. (29)

Algebraic property (27) can be interpreted in terms of operators acting in the space of sections
of the semiclassical bundle. Namely, let Ψ be a section

Ψ = {ΨY ∈ FY , Y ∈ X}.

Set Ǔg : Ψ �→ ǓgΨ, with

(ǓgΨ)Y = Ug(Y ← ug−1Y )Ψug−1Y . (30)

Then the group property (22) is simplified:

Ǔg1g2 = Ǔg1Ǔg2 , (31)

so that for g(t) = exp[tδg] one has Ǔg = exp[−itȞ[δg], with

Ȟ[δg] = H(δg|X)− i∇[δg].

The property (27) reads

[Ȟ[δg1]; Ȟ[δg2]]Ψ = −iȞ[δg1; δg2]Ψ. (32)

The mathematical formulations of the results can be found in [9, 10].
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6 Further developments and applications

The obtained results can be applied to quantum field theories. The proof of Poincaré invariance
of semiclassical scalar field theory is presented in [11].

One can investigate the semiclassical theory [12, 13] of gauge theories [14, 2]. For such con-
strained systems, the classical extended phase space is not flat (X �= R

2n+1). It is an m-
dimensional surface

Λa(X) = 0, a = 1,m. (33)

Here the constraints Λa obey the relations

{Λa; Λb} = 0

on the constraint surface (33).
Moreover, there is an equivalence relation on the classical phase space. The functions Λa are

generators of classical gauge transformations. The m-dimensional gauge group L acts on the
phase space

α ∈ L �→ λα : X → X ,
λe = 1, λα1α2 = λα1λα2 ,

and classical states X ∼ λαX are set to be equivalent.
In the semiclassical theory, the semiclassical bundle is nontrivial: the inner products in FX

are different for different X. The gauge group acts on the semiclassical bundle. The unitary
operators

Vα(λαX ← X) : FX → FλαX

such that

Vα1α2(λα1α2X ← X) = Vα1(λα1α2X ← λα2X)Vα2(λα2X ← X)

are given. The semiclassical states

(X, f) ∼ (λαX,Vα(λαX ← X)f) (34)

are set to be equivalent.
Introduce a notion of a symmetry group for gauge theories. For g ∈ G, the transformations

ug : X → X ; Ug(ugX ← X) : FX → FugX

should be given. Gauge equivalent states (34) should be taken to gauge equivalent, i.e.

(X1, f1) ∼ (X2, f2)

implies

(ugX1, Ug(ugX ← X)f1) ∼ (ugX2, Ug(ugX ← X)f2). (35)

Requirements (21) and (22) are too strong for gauge theories. One should impose a weaker
condition

(ug1g2X,Ug1g2(ug1g2X ← X)f) ∼ (ug1ug2X,Ug1(ug1ug2X ← ug2X)Ug2(ug2X ← X)f). (36)

To investigate infinitesimal properties, consider the gauge invariant sections of the semiclassical
bundle, which satisfies the condition

Vα(λαY ← Y )ΨY = ΨλαY .

Introduce the operator Ǔg with the help of equation (30). The first requirement (35) means that
gauge invariant sections are taken to gauge invariant. The property (36) means that relation (31)
is satisfied. Then the infinitesimal property (32) is obeyed for gauge-invariant sections Ψ.
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