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Axially Symmetric Black Hole Skyrmions
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It has been known that a B = 2 skyrmion is axially symmetric. We consider the Skyrme
model coupled to gravity and obtain static axially symmetric black hole solutions nume-
rically. The black hole skyrmion no longer has integer baryonic charge but has fractional
charge outside the horizon as in the spherically symmetric case. Therefore, the solution
represents a black hole partially swallowing a deuteron.

1 Introduction

It has been shown that the no-hair conjecture for black holes [1] is violated when some non-
linear matter fields are considered. The first counter example was provided by Luckock and
Moss [2] who found the Schwarzschild black hole with Skyrme hair. The presence of the horizon
in the core of skyrmion unwinds the skyrmion, leaving fractional baryon charge outside the
horizon. The full Einstein–Skyrme system was solved later by Droz et al. to obtain spherically
symmetric black holes with Skyrme hair [3]. Other counterexamples include static spherically
symmetric black holes in the Einstein–Yang–Mills (EYM) [4], the Einstein–Yang–Mills–Dilaton
(EYMD) [5, 6] and the Einstein–Yang–Mills–Higgs (EYMH) theory [7]. More interestingly, it
has been also shown that these Einstein–Yang–Mills theories have static axially symmetric black
hole solutions [8, 9].

Motivated by the axially symmetric hairy black holes in Refs. [8, 9], we shall study the
Einstein–Skyrme model with axial symmetry. It has been shown that a B = 2 skyrmion is
axially symmetric and represents a deuteron [10]. Our model, therefore, provides a convenient
framework to study the interactions between a deuteron and a black hole. By examining the
baryon number of the solution, the absorption of the deuteron by the black hole is observed
as in the spherically symmetric case. We expect our solutions to be stable as skyrmions are
topologically stable objects.

2 The model

The Skyrme model is an effective theory of QCD based on pion fields alone [11]. At low ener-
gy, the symmetry of the strong interaction is broken spontaneously and hence the Skyrme
Lagrangian retains the chiral symmetry. The Skyrme model coupled to gravity is defined by

L = LS + LG, (1)

where

LS =
f2

π

16
gµνtr

(
U−1∂µUU−1∂νU

)
+

1
32a2

gµρgνσtr
(
[U−1∂µU, U−1∂νU ][U−1∂ρU, U−1∂σU ]

)
,

LG =
1

16πG
R.

Let us introduce an ansatz for the metric given in Ref. [8]

ds2 = −fdt2 +
m

f
(dr2 + r2dθ2) +

l

f
r2 sin2 θdϕ2, (2)

where f = f(r, θ), m = m(r, θ), and l = l(r, θ).
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The axially symmetric Skyrme field can be parameterized by

U = cos F (r, θ) + i�τ · �nR sinF (r, θ), (3)

with �nR = (sin Θ cosnϕ, sin Θ sinnϕ, cosΘ). In terms of F and Θ, the Lagrangian (1) has the
form

LS = L(1)
S + L(2)

S , (4)

where

L(1)
S = −f2

πf

8m

{
(∂rF )2+

1
r2

(∂θF )2+
[
(∂rΘ)2+

1
r2

(∂θΘ)2
]
sin2 F +

n2

r2 sin2 θ

m

l
sin2 Θ sin2 F

}
,

L(2)
S = − 1

2a2r2

(
f

m

)2{
(∂rF∂θΘ − ∂θF∂rΘ)2+

n2

sin2 θ

m

l

[
(∂rF )2+

1
r2

(∂θF )2
]

sin2 Θ
}

sin2 F

− 1
2a2r2

(
f

m

)2 {
n2

sin2 θ

m

l

[
(∂rΘ)2 +

1
r2

(∂θΘ)2
]

sin2 F sin2 Θ
}

sin2 F.

Since we are interested in B = 2, we shall take the winding number n = 2.
The baryon current in curved space-time is obtained by taking the space-time covariant

derivative ∇µ,

bµ =
1

24π2
εµνρσtr(U−1∇νUU−1∇ρUU−1∇σU). (5)

The baryon number then is given by integrating b0 over the hypersurface t = 0,

B =
∫

drdθdϕ

√
g(3) b0 = − 1

π

∫
drdθ (∂rF∂θΘ − ∂θF∂rΘ) sin Θ(1 − cos 2F )

= − 1
π

∫
dF ∧ dΘ sin Θ(1 − cos 2F ) =

[
1
2π

(2F − sin 2F ) cos Θ
]F1,Θ1

F0,Θ0

,

where (F0, Θ0) and (F1, Θ1) are the values at the inner and outer boundary, respectively. In flat
space-time [10], we have

(F0, Θ0) = (π, 0) and (F1, Θ1) = (0, π), (6)

which gives B = 2. In the presence of a black hole, the integration should be performed from
the horizon to infinity, which changes the values of F0 and allows the B to be fractional.

The energy density of the skyrmion outside the horizon can be obtained by the zero-zero
component of the stress-energy tensor −T 0

0 ,

ε = −T 0
0

=
f2

π

8
f

m
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1
r2
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r2
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r2 sin2 θ

m
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sin2 F sin2 Θ

]

+
1

2a2r2

f3
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1
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+
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sin2 θ
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{
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sin2 F sin2 Θ
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sin2 F (7)
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3 Boundary conditions

Let us consider the boundary conditions for the chiral fields and metric functions with help of
Ref. [8]. At the horizon r = rh, the time-time component of the metric satisfies

gtt = −f(rh, θ) = 0. (8)

Regularity of the metric at the horizon requires

m(rh, θ) = l(rh, θ) = 0. (9)

The boundary conditions for F (r, θ) and Θ(r, θ) at the horizon are obtained by expanding them
at the horizon and inserting into the field equations derived from δLS/δF = 0 and δLS/δΘ = 0
respectively,

∂rF (rh, θ) = ∂rΘ(rh, θ) = 0. (10)

The condition that the space-time is asymptotically flat requires

f(∞, θ) = m(∞, θ) = l(∞, θ) = 1. (11)

The boundary conditions for F and Θ at infinity remain the same as in flat space-time

F (∞, θ) = 0, ∂rΘ(∞, θ) = 0. (12)

For the solution to be axially symmetric, we have

∂θf(r, 0) = ∂θm(r, 0) = ∂θl(r, 0) = 0, (13)

∂θf
(
r,

π

2

)
= ∂θm

(
r,

π

2

)
= ∂θl

(
r,

π

2

)
= 0. (14)

Likewise for F ,

∂θF (r, 0) = ∂θF
(
r,

π

2

)
= 0. (15)

Regularity on the axis and axisymmetry impose the boundary conditions on Θ as

Θ(r, 0) = 0, Θ
(
r,

π

2

)
=

π

2
. (16)

4 Numerical results and discussions

For the purpose of numerical computation, we shall introduce a dimensionless radial coordinate
x and coupling constant α,

x = afπr, α = πGf2
π . (17)

Then, in this system, free parameters are only xh and α. Fig. 1 shows dependence of the metric
function f on θ with α = 1.0. For smaller values of α, the results are slightly lower than that of
α = 1.0. Other metric functions l and m exhibit similar behavior as f . The Skyrme functions F
and Θ are shown in Figs. 2, 3. α dependence as well as θ dependence of F is rather small.
Θ is less distorted from Θ = θ for smaller α. We show the energy density of the Skyrme fields
(ε = −T 0

0 ) in Figs. 4, 5 with α = 0.01, 1.0. As can be seen, the density becomes dumbbell in
shape with the highest along z-axis while in flat space-time it is toroidal. As α becomes small, it
approaches to a more spherical shape. It is interesting to see how the presence of the black hole
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Figure 1. The metric function f as a function of x with α = 1.0 and xh = 1.0.

Figure 2. The Skyrme function F as a function
of x with α = 1.0 and xh = 1.0.

Figure 3. The Skyrme function Θ as a function
of θ with α = 1.0 and xh = 1.0.

affects the shape of the skyrmion. The domain of existence of the solutions in the parameter
space is shown in Fig. 6. For α � 2.0, there exists no solution since the chiral fields become
too massive for the black hole to support outside the horizon. It is also observed that the black
hole has a finite minimum size unlike the spherically symmetric case. Hence one cannot recover
regular solutions as the limit of zero horizon size. Fig. 7 shows the dependence of the baryon
number on α and xh. It is observed that the baryon number gets more absorbed by the black
hole in increase of the size of the black hole and the coupling constant.

We suspect that our solutions should be stable since the skyrmions are highly stable objects.
This statement may be verified by applying the catastrophe theory of hairy black holes proposed
in Ref. [12].

Finally, recent studies of theories with large extra dimensions indicate that a true Planck
scale is of order a TeV and the production rate of black holes massive than the Planck scale
become quite large [13–15]. It will be interesting to extend our model to higher dimensions since
it bring us an interesting possibility that the deuteron black holes could be produced in the LHC
by collision of two protons.

Inclusion of gauge fields will be also interesting to study electrically charged deuteron black
holes [16].
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Figure 4. A contour plot of the energy density ε

in cylindrical coordinates ρ and z with xh = 1.0.
Figure 5. A contour plot of the energy density ε

in cylindrical coordinates ρ and z with xh = 1.0.

Figure 6. The domain of existence of the so-
lution. For α � 2.0, there exists no non-trivial
solution.

Figure 7. The dependence of the baryon number
on the size of the horizon.
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