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Quasi-energy states and a spectrum of quasi-energies asymptotic in small parameter � (�→0)
are constructed for a multidimensional Hartree type equation with non-local nonlinearity
and with an external field cyclic in time. The quasi-energy states are a special case of
trajectory coherent solutions of the Hartree type equation, which belong to the class of
semiclassically concentrated functions. A function of this class describes a solitary wave
localized in a neighborhood of a phase trajectory in the space of moments of the solution.
The phase trajectory is closed due to the configuration of the external field. The Aharonov–
Anandan geometric phases, which characterize a system “as a whole”, are found for the
quasi-energy states in a semiclassical approximation accurate to O(�3/2), � → 0.

1 Introduction

Quantum systems exposed to external periodic fields have nontrivial topological properties and
are characterized by the geometric phase (GP) of a wave function [1, 2]. Systems of this type
possess a set of quasi-energy states (QES’s) and a spectrum of quasi-energies, which were orig-
inally introduced in [3, 4]. Mathematically, QES’s and GP’s are relevant to the properties of
a quantum system as a whole. In particular, GP is related to a special kind of gauge symmetry.
Details of the GP theory and its applications can be found in the reviews [5, 6].

In constructing quasi-energy states and geometric phases for similar nonlinear systems des-
cribed by partial differential equations one faces the problem of integrability of nonlinear equa-
tions with external fields (variable coefficients) responsible for the nontrivial geometry and
topology of the system. The usual symmetry analysis, when directly applied to these sys-
tems, fails since ordinary symmetry structures are effectively calculated for nonlinear equations
with constant coefficients (see, for example, [7–9]). It should be noted that the above gauge
symmetries can be of interest in the symmetry analysis of nonlinear equations of mathematical
physics. Gauge symmetries result from the global properties of the geometry of a system and
are constructed differently than standard symmetry analysis structures.

In this work, based on the Maslov complex germ method [10] we construct quasi-energy states
asymptotic in small parameter �, � → 0, in the class of semiclassical concentrated solutions of
a multidimensional Hartree type equation (HTE) with a non-local nonlinearity and an external
field periodic in time. The solution construction technique developed by the authors [11, 12]
relies upon the periodic solutions of the dynamic system of Hamilton–Ehrenfest equations. The
existence of periodic phase trajectories is provided by the external field.

The geometric phases for the QES under consideration are obtained in explicit form.

2 Problem statement and notations

Consider the Hartree type equation

{−i�∂t + Ĥ(t) + κV̂ (t, Ψ(t))}Ψ(�x, t) = 0, Ψ ∈ L2

(
R

3
x

)
. (1)
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Here, ∂t = ∂/∂t; � is a “small parameter”, � ∈ [0, 1), �x ∈ R
3; |Ψ|2 = ΨΨ∗, and the function Ψ∗

is complex conjugate to Ψ. The scalar product of the functions Ψ and Φ in the space L2

(
R

3
x

)
is

denoted as

〈Ψ|Φ〉 =
∫

R3

Ψ∗(�x)Φ(�x)d�x. (2)

Following quantum mechanical terms, we shall refer to the solutions of equation (1) as states.
The linear operator Ĥ(t) = H(ẑ, t) is a Weyl-ordered function [13] of time t and operators

ẑ = (�̂p, �x), �̂p = −i�∇ = −i�
∂

∂�x
, (3)

for which the following commutation relations are valid:

[ẑk, ẑj ]− = i�Jkj , k, j = 1, 6, (4)

where J = ‖Jkj‖6×6 is the unit symplectic matrix

J =
(

0 −I

I 0

)
6×6

, I =


 1 0 0

0 1 0
0 0 1


 . (5)

In quantum mechanical terms the linear operator Ĥ(t) is written as

Ĥ(t) =
1

2m

(
�̂p − e

c
�A(�x, t)

)2 − e〈 �E(t), �x〉 +
k

2
�x 2. (6)

The external field in the operator (6) is the superposition of a constant magnetic field �H =

(0, 0, H) with vector potential �A =
1
2

�H×�x, an electric field �E(t) = (E cos ωt, E sinωt, 0) periodic

in time with frequency ω, and an oscillator field with potential
k

2
�x2. The nonlocal operator

V̂ (t, Ψ(t)) in equation (1) has the form

V̂ (t, Ψ(t))Ψ(�x, t) =
∫

R3

V (�x, �y)|Ψ(�y, t)|2d�yΨ(�x, t), (7)

V (�x, �y) = V0 exp
[
−(�x − �y)2

2γ2

]
. (8)

The quantities E, H, V0, k, ω, γ, κ, e, and c are real parameters; 〈�x, �y〉 =
3∑

j=1
xjyj is the

Euclidean scalar product of the vectors �x, �y, �x 2 = 〈�x, �x〉.
Below we shall use the following notation:

ωH =
eH

mc
is the cyclotron frequency, (9)

ω0 =

√
k

m
is the oscillator frequency, (10)

ωa = ω0

√
1 +

(
ωH

2ω0

)2

, (11)

ωnl =

√
|κ̃V0|
mγ2

is the “nonlinear frequency”, κ̃ = κ‖Ψ‖2, η = sign(κ̃V0). (12)
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Equation (1) has many physical applications. In particular, in the Bose–Einstein condensate
theory, the solution Ψ has the meaning of wave function, and the nonlocal potential V (�x, �y)
describes the coupling of condensate particles which are in an external field (see, e.g., the
reviews [14,15].

Let us define the geometric phase for the Hartree type equation (1) based on the general
concept of geometric phases in quantum mechanics, proposed by Aharonov and Anandan for
cyclic states [2] (see also [5, 16]).

Quasi-energy states ΨE(�x, t, �) in quantum mechanics were introduced by Zel’dovich [3] and
Ritus [4] by the following condition:

ΨE(�x, t, �) = e−iEt/�ϕE(�x, t, �), where ϕE(�x, t + T, �) = ϕE(�x, t, �). (13)

The quantity E entering into equation (13) is called quasi-energy and defined modulo �ω,
(ω = 2π/T ), i.e. E ′ = E + m�ω, m ∈ Z.

States of this type play a key role in studying quantum mechanical systems exposed to strong
periodic external fields when standard methods of the non-stationary perturbation theory are
inapplicable.

Quasi-energy states are special cases of cyclic states introduced by Aharonov and Anandan [2]
and have nontrivial GP’s.

For the Hartree type equation (1), by a cyclic state on a time interval [0, T ], we mean the
solution Ψ(t) possessing the property

Ψ(t) = eif(t)ϕ(t), t ∈ [0, T ], f(T ) − f(0) = φ(mod 2π), ϕ(T ) = ϕ(0). (14)

The complete phase φ of the function (14) is subdivided into two summands: the dynamic
phase

δ = −1
�

∫ T

0
dt
〈Ψ(t)|[Ĥ(t) + κV̂ (t, Ψ(t))]|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉 (15)

and the Aharonov–Anandan geometric phase

γ = i

∫ T

0
dt
〈ϕ(t)|ϕ̇(t)〉
〈ϕ(t)|ϕ(t)〉 . (16)

Let us call the quasi-energy state for the Hartree type equation a solution ΨE(�x, t, �) of (1)
for which we have

ΨE(�x, t + T, �) = e−iET/�ΨE(�x, t, �). (17)

It can be easily verified that equations (13) and (17) are equivalent. It is also obvious that quasi-
energy states are a special case of the cyclic states (14). The set of the E values constitutes
a spectrum of quasi-energies.

Comparing (14) and (17), we obtain that the function f(t) entering into a quasi-energy state
is

f(t) = −Et/�, (18)

and for the complete phase φ, in accordance with (14), we have

φ = −ET/� (mod 2π). (19)

By virtue of (15)–(19), the Aharonov–Anandan phase γE corresponding to the quasi-energy state
ΨE(�x, t, �) can be determined by the formula

γE = −ET

�
+

1
�

∫ T

0
dt
〈ΨE |[Ĥ(t) + κV̂ (t, Ψ(t))]|ΨE〉

〈ΨE |ΨE〉 (mod 2π). (20)
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We now state for equation (1) the problem of finding, in a semiclassical approximation, of
the quasi-energy states and the quasi-energy spectrum in the class of trajectory concentrated
functions [11,12]

Pt
� = Pt

�

(
Z(t, �), S(t, �)

)
=

{
Φ : Φ(�x, t, �) = ϕ

(
∆�x√

�
, t, �

)
exp

[
i

�
(S(t, �) + 〈�P (t, �), ∆�x〉)

]}
, (21)

where the function ϕ(�ξ, t, �) belongs to the Schwartz space S with respect to the variable �ξ ∈ R
3,

smoothly depends on t, and is regular in
√

�, � → 0. Here, ∆�x = �x − �X(t, �); the real
function S(t, �) and the 6-component vector function Z(t, �) = (�P (t, �), �X(t, �)), which specify
the class Pt

�
(Z(t, �), S(t, �)), regularly depend on

√
� in the neighborhood of � = 0 and are to be

determined. In the cases where this does not lead to ambiguity, we use the shorthand symbol Pt
�

for Pt
�
(Z(t, �), S(t, �)).

The functions of the class Pt
�

are normalizable ‖Φ(t)‖2 = 〈Φ(t)|Φ(t)〉 in the space L2(R3
x)

with respect to the scalar product (2). If Φ(t) is a solution of equation (1), then ‖Φ(t)‖2 =
‖Φ(0)‖2; therefore, in what follows the argument t in ‖Φ(t)‖2 will be omitted.

Let us define for a linear operator Â : Pt
�
→ Pt

�
and Ψ ∈ Pt

�
its mean value as

〈Â〉 =
1

‖Ψ‖2
〈Ψ|Â|Ψ〉. (22)

For a solution Ψ of equation (1), we have

d〈Â(t)〉
dt

=

〈
∂Â(t)

∂t

〉
+

i

�
〈[Ĥ(t) + κV̂ (t, Ψ(t)), Â(t)]〉, (23)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of the linear operators Â and B̂.
The vector function Z(t, �) = (�P (t, �), �X(t, �)) is a parameter of the class Pt

�
of the form (21),

which is to be determined.
When constructing a solution Ψ ∈ Pt

�
of equation (1), the vector function Z(t, �) will be

chosen to satisfy the condition

�X(t, �) = 〈�x〉, �P (t, �) = 〈�̂p〉. (24)

Let us construct asymptotic solutions for equation (1) with an accuracy of O(�3/2), � → 0,
which correspond to the leading term of the asymptotic expansion. To do this, we expand the
function V (�x, �y) of the form (8) in the operator (7) in a Taylor power series of ∆�x = �x− �X(t, �),
∆�y = �y − �X(t, �) and restrict ourselves to the terms of the order two inclusive in ∆�x and ∆�y.
Then equation (1) can be written

{
−i�∂t + H̃(t) + 〈Hz(t), ∆ẑ〉 +

1
2
〈∆ẑ, H̃zz(t)∆ẑ〉

}
Ψ(�x, t) = O

(
�

3/2
)
. (25)

Here, we take into account (24) and use the following notation: ∆ẑ = (∆�̂p, ∆�x) = (�̂p− �P (t, �), �x−
�X(t, �)). The central moments of the function Ψ(�x, t) are written as a (6 × 6)-matrix ∆2(t) of
the form

∆2(t) =

(
σpp(t) σpx(t)
σxp(t) σxx(t)

)
, (26)
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where σpp(t) = (σpkpl
(t)) = (〈∆p̂k∆p̂l〉), σxp(t) = (σxkpl

(t)) =
(

1
2〈∆xk∆p̂l + ∆p̂l∆xk〉

)
, σxx(t) =

(σxkxl
) = (〈∆xk∆xl〉);

H̃(t) = H(t) + κ̃V0 − η
mω2

nl

2

3∑
j=1

σxjxj , (27)

H(t) =
1

2m
�P 2 +

mω2
a

2
(
X2

1 + X2
2

)
+

mω2
0

2
X2

3

+
ωH

2
(P1X2 − P2X1) − eE(X1 cos ωt + X2 sinωt), (28)

Hz(t) =
( Hp(t)

Hx(t)

)
=




1
m

P1 +
ωH

2
X2

1
m

P2 − ωH

2
X1

1
m

P3

−ωH

2
P2 + mω2

aX1 − eE cos ωt

ωH

2
P1 + mω2

aX2 − eE sin ωt

mω2
0X3




, (29)

where �P = �P (�, t), �X = �X(�, t) and the notation (9)–(12) is used;

H̃zz(t) =

(
H̃pp(t) H̃px(t)

H̃xp(t) H̃xx(t)

)
, (30)

H̃pp(t) = (H̃pkpl
(t)) = diag

(
1
m

,
1
m

,
1
m

)
, (31)

H̃xx(t) = (H̃xkxl
(t)) = diag

(
m(ω2

a − ηω2
nl), m(ω2

a − ηω2
nl), m(ω2

0 − ηω2
nl)

)
, (32)

H̃px(t) = (H̃pkxl
(t)) =




0
ωH

2
0

−ωH

2
0 0

0 0 0


 . (33)

In [11,12], equation (25) is called an associated linear Schrödinger equation. Its Hamiltonian is
square in ∆ẑ:

ˆ̃H(t) = H̃(t) + 〈Hz(t), ∆ẑ〉 +
1
2
〈∆ẑ, H̃zz(t)∆ẑ〉. (34)

The solutions of the linear equation (25) enable us to find approximate solutions of the nonlinear
Hartree type equation (1).

3 The Hamilton–Ehrenfest system

The solution Ψ of equation (1) is constructed in the class of trajectory concentrated functions (21)
with the help of the solutions of the dynamic Hamilton–Ehrenfest equations (HEE’s) for the
centered moments of the field Ψ [11,12]. To obtain a solution Ψ exactly up to O(�3/2), it suffices
to take into account the moments of the second order. It should also be noted that to construct
the quasi-energy states (17) for equation (1), one must take the periodic solutions of the HEE’s.
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Let us substitute the operators �̂p, �x, and ∆2(t) into (23) instead of the operator Â. In view
of (24) and the notation (26)–(33), we obtain the following HEE’s:

Ż(t, �) = JHz(t), (35)

∆̇2(t) = JH̃zz(t)∆2 − ∆2H̃zz(t)J. (36)

Obviously, equations (35), which describe the motion of the centroid of the field Ψ, are integrable
independently of equations (36) for the second moments ∆2(t). Therefore, we first find the
periodic solution of the system (35) and then integrate equations (36). The elementary particular
periodic solution of the system (35) can be taken in the form

Z0(t, �) = (�P0(t, �), �X0(t, �)),

�P0(t, �) =
(
−m

(ωH

2
+ ω

)
ξ sinωt, m

(ωH

2
+ ω

)
ξ cos ωt, 0

)
, (37)

�X0(t, �) = (ξ cos ωt, ξ sin ωt, 0), (38)

ξ =
eE

m(ω2
0 − ωHω − ω2)

. (39)

For the solution (37), the Hamiltonian (34) of equation (25) is periodic with the period T = 2π/ω.
In what follows we assume that ξ−1 �= 0 which means the absence of a resonance.

In [11,12], the system (36) is shown to be equivalent to the system of equations in variations

Ȧ(t) = JH̃zz(t)A(t), (40)

where A(t) is a 6 × 6 nonsingular matrix and H̃zz(t) has the form of (30).
Solving the system (40), one can find the trajectory-coherent states (TCS’s) for the associated

linear Schrödinger equation (25) in explicit form using well-known methods (see, e.g., [17]).
These TCS’s, in turn, lead to approximate TCS’s for the nonlinear Hartree type equation (1) in
the class of trajectory concentrated functions (21) [11,12].

Taking into account the periodic behavior of the Hamiltonian (34), (37), we now state the
problem of constructing quasi-energy states in the class of TCS’s (quasi-energy TCS’s).

To do this, we use the solutions of the system (40) that satisfy the Floquet condition

a(t + T ) = exp(iΩT )a(t), (41)

where a(t) is a column of the matrix A(t) and Ω is a real constant. The fundamental matrix of
the system (40), (41) is written as

A(t) = (a1(t), a2(t), a3(t), a∗1(t), a
∗
2(t), a

∗
3(t)),

where the columns of the matrix A(t) are denoted by aj(t), j = 1, 3 and a∗j (t) is complex
conjugate to aj(t) normalized by the condition 〈aj , J

T a∗l 〉 = 2iδjl, 〈aj , J
T al〉 = 0. The columns

are given by the following expressions:

a1(t) =
eiω+t

√
2

(
g0, ig0, 0,− i

g0
,

1
g0

, 0
)T

, a2(t) =
eiω−t

√
2

(
g0,−ig0, 0,− i

g0
,− 1

g0
, 0

)T

,

a3(t) = eiωst

(
0, 0, gs, 0, 0,

−i

gs

)T

. (42)

Here

ω+ =
√

ω2
a − ηω2

nl +
ωH

2
, (43)

ω− =
√

ω2
a − ηω2

nl −
ωH

2
(44)
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are combined frequencies, ωs =
√

ω2
0 − ηω2

nl, g0 =
√

m

2
(ω+ + ω−), gs =

√
mωs,

A(t) =
(

B(t) B∗(t)
C(t) C∗(t)

)
, (45)

where

B(t) =




g0e
iω+t

√
2

g0e
iω−t

√
2

0

ig0e
iω+t

√
2

−ig0e
iω−t

√
2

0

0 0 gse
iωst


 , C(t) =




−ieiω+t

√
2g0

−ieiω−t

√
2g0

0

eiω+t

√
2g0

−eiω−t

√
2g0

0

0 0
−ieiωst

gs




.

The periodic motion (37), (38) is stable in the linear approximation provided ω2
0 > ηω2

nl. This
is assumed to be fulfilled.

The solution of the system (26), (36) is presented via the blocks B(t) and C(t) of the ma-
trix A(t) as

σxx(t) =
�

4
(C(t)DνC

+(t) + C∗(t)DνC
T (t)),

σpp(t) =
�

4
(B(t)DνB

+(t) + B∗(t)DνB
T (t)),

σpx(t) =
�

4
(B(t)DνC

+(t) + B∗(t)DνC
T (t)),

where the diagonal matrix Dν = diag (2ν1 + 1, 2ν2 + 1, 2ν3 + 1), ν1, ν2, ν3 = 0, 1, 2, . . . and the
symbol (+) implies Hermitian conjugation. The matrices σxx and σpp are diagonal as well and
are equal to

σxx(t) =
�

m
diag

(
ν1 + ν2 + 1
ω+ + ω−

,
ν1 + ν2 + 1
ω+ + ω−

,
2ν3 + 1

2ωs

)
,

σpp(t) =
�m

4
diag ((ω+ + ω−)(ν1 + ν2 + 1), (ω+ + ω−)(ν1 + ν2 + 1), 2ωs(2ν3 + 1)), (46)

The nonzero elements of the matrix σxp(t) are σp1x2(t) = −σp2x1 = �

2 (ν1 − ν2). Thus, the
solution (37) and the relevant matrix of the second moments ∆2 constitute a periodic solution
of the HEE’s (35), (36).

4 The quasi-energies and geometric phases

Let us construct the quasi-energy TCS’s of the associated linear Schrödinger equation (25) for
the periodic solutions of the HEE’s (35), (36).

Based on these solutions, we can find, in a semiclassical approximation, the corresponding
solutions of the Hartree type equation (1), which coincide with the quasi-energy TCS’s of equa-
tion (25) for the time zero. We shall refer to these solutions of equation (1) as semiclassical
quasi-energy trajectory coherent states (SQETCS’s).

Let us construct the SQETCS’s following [11,12]. The linear Schrödinger equation (25) with
the squared Hamiltonian (34) admits a solution in the form of a Gaussian wave packet:

Φ(�x, t) = N� exp
{

i

�

[
S(t, �) + 〈�P0(t, �), ∆�x〉 +

1
2
〈∆�x, Q(t, �)∆�x〉

]}
, (47)
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where the normalization factor N�, the real function S(t, �), and the complex matrix Q(t, �)
are to be determined. The Hamiltonian (34) of the linear Schrödinger equation (25), whose
coefficients (26)–(33) are specified by solving the HEE’s (37), (46), is periodic in time with
period T = 2π/ω. In this case, there exists a solution of the form (47) satisfying the quasi-
energy condition (17). Following quantum mechanical terms, we treat this solution as a vacuum
state and denote it as |0, t〉. One can directly verify that

|0, t〉 = N� exp

{
i

�

[
1
2
eEξ − κ̃V0 − �

2
(ω+ + ω− + ωs) + η�ω2

nl

(
ν1 + ν2 + 1
ω+ + ω−

+
2ν3 + 1

4ωs

)]
t

− i

�

(ωH

2
+ ω

)
mξ(∆x1 sinωt − ∆x2 cos ωt)

− m

4�
[(ω+ + ω−)(∆x2

1 + ∆x2
2) + 2ωs∆x2

3]

}
, (48)

where ξ is of the form (38).
It can easily be seen that the operators

âj(t) = Nj〈aj(t), JT ∆ẑ〉, j = 1, 3, (49)

where Nj is a normalization factor and the vector function aj(t) is the jth column of (42), are
the symmetry operators for the linear Schrödinger equation (25) commuting with the equation
operator,

−i�∂tâj(t) + [ ˆ̃H(t), âj(t)] = 0.

The trajectory coherent states |ν, t〉 for equation (25) are determined as a result of the action of
the creation operators â+

j (t) on the vacuum state (48)

|ν, t〉 =
3∏

j=1

1√
νj !

(â+
j (t))νj |0, t〉. (50)

Here, the operators â+
j (t) are Hermite conjugate to âj(t) with respect to the scalar product (2).

Substituting equations (48) and (49) into (50), we obtain explicit expressions of the TCS’s for
equation (25):

|ν, t〉 = exp
[−i(ω+ν1 + ω−ν1 + ωsν3)t

] 3∏
j=1

N
νj
aj

�
1
2
(ν1+ν2+ν3)

2
ν1+ν2

2

√
ν1!ν2!
ν3!

×
ν1∑

k1=0

ν2∑
k2=0

(−1)ν2+ν3−k1 iν1+ν2−k1−k2

k1!k2!(ν1 − k1)!(ν2 − k2)!
Hk1+k2

(
∆x1g0√

�

)

× Hν1+ν2−k1−k2

(
∆x2g0√

�

)
Hν3

(
∆x3gs√

�

)
|0, t〉. (51)

The states (51) satisfy the condition (17) and they are the quasi-energy TCS’s for equa-
tion (25). When |ν, 0〉 coincides with the initial conditions for equation (1), expression (51)
is a semiclassical approximation for the quasi-energy TCS of the Hartree type equation (1)
with an accuracy of O(�3/2), � → 0. For example, expression (48) is a solution of the linear
Schrödinger equation (25) for any ν = (ν1, ν2, ν3). However, for t = 0 the matrix ∆2 of the
form (26), (46) with ν = (ν1, ν2, ν3) = (0, 0, 0) corresponds to the state |0, 0〉. Thus, the func-
tion (48) will be an asymptotic solution, up to O(�3/2), of the Hartree type equation (1) only if
ν = (ν1, ν2, ν3) = (0, 0, 0).
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Substituting the function (51) into condition (17)

|ν, t + T 〉 = exp
[
− i

�
EνT

]
|ν, t〉,

we obtain the spectrum of quasi-energies Eν for equation (1)

Eν = −eE

2
ξ + κ̃V0 + �

[(
ω+ − ηω2

nl

ω+ + ω−

)(
ν1 +

1
2

)

+
(

ω− − ηω2
nl

ω+ + ω−

)(
ν2 +

1
2

)
+

(
ωs − ηω2

nl

2ωs

)(
ν3 +

1
2

)]
+ O

(
�

3/2
)
. (52)

The Aharonov–Anandan geometric phases (20) related to the SQETCS’s (51) are written as

γEν = −T

�
Eν +

1
�

∫ T

0
〈 ˆ̃H(t)〉dt, (53)

where Eν and the operator ˆ̃H(t) are of the form (52) and (34), respectively.

Calculation of the mean value for the operator ˆ̃H(t) according to the formula (22) for the
functions of the form (51) yields

〈 ˆ̃H(t)〉 = H̃(t) +
�

2
(ω+ + ω−)(ν1 + ν2 + 1) + �ωs

(
ν3 +

1
2

)
+

�ωH

4
(ν1 − ν2),

H̃(t) =
mξ2

2
(3ω2 + 2ωωH − ω2

0) + κ̃V0 − η�ω2
nl

ω+ + ω−
(ν1 + ν2 + 1) − η�ω2

nl

2ωs

(
ν3 +

1
2

)
. (54)

Let us now substitute the quasi-energies (52) and (54) into the formula (53). Then we
obtain the following expression for the Aharonov–Anandan geometric phase corresponding to
the quasi-energy TCS’s of equation (1) in the semiclassical approximation:

γEν =
T

2�
m(2ω2 + ωωH)ξ2 + O

(
�

3/2
)
, (55)

where ξ has the form (39).
For more detailed analysis of quasi-energies and geometric phases it is useful to compare the

expressions (52) and (55) with similar ones for the one-dimensional case.

5 One-dimensional case

Consider equation (1) where Ψ belongs to the space L2(R1
x), the linear operator Ĥ(t) is taken

as

Ĥ(t) =
p̂2

2m
− eEx cos ωt +

k

2
x2, (56)

and the nonlocal operator V̂ (t, Ψ(t)) is

V̂ (t, Ψ(t))Ψ(x, t) =
∫ +∞

−∞
V (x, y)|Ψ(y, t)|2dyΨ(x, t),

V (x, y) = V0 exp
[
−(x − y)2

2γ2

]
. (57)



Semiclassical Approach to the Geometric Phase 1463

As the magnetic field is missing (H = 0) in the case under consideration, the cyclotron fre-
quency (9) is zero (ωH = 0) and from (11) we have ωa = ω0. Putting ωH = 0 into (43), (44) one
has

ω+ = ω− = ωs =
√

ω2
0 − ηω2

nl.

The Hamilton–Ehrenfest system (35), (36) corresponding to (56), (57) accurate to O(�3/2) is

ṗ = −kx + eE cos ωt, ẋ =
p

m
, (58)

σ̇xx =
2
m

σxp, σ̇xp =
1
m

σpp − mω2
s σxx, σ̇pp = −2mω2

s σxp. (59)

The periodic solution (37), (38) with the period T = 2π/ω for the Hamilton system (58) takes
the form

P0(t, �) = −mωξ sinωt, X0(t, �) = ξ cos ωt.

Here and below

ξ =
eE

m(ω2
0 − ω2)

.

The matrix A(t) in the system of equations in variations (40) has now the size 2 × 2 with
one-dimensional blocks B(t) and C(t) in (45). Accordingly, the system (40) becomes

Ḃ = −mω2
s C, Ċ =

B

m
. (60)

The Floquet solution (41)

a(t) =
(

B(t)
C(t)

)

of the system (60) normalized by the condition 〈a, JT a∗〉 = 2i, J =
(

0 −1
1 0

)
, is found as

a(t) =
exp(iωst)√

mωs

(
imωs

1

)
.

Then the quasi-energy TCS’s similar to (51) for the one-dimensional HTE (1) with operators
(56), (57) have the form

|n, t〉 =
in√
2nn!

N� exp
{

i

�

[
1
4
eEξt − 3ω2 − ω2

0

8ω
mξ2 sin 2ωt − κ̃V0t (61)

−�

(
ωs − ηω2

nl

2ωs

)(
n +

1
2

)
t

]
− i

�
mωξ sinωt∆x − mωs

2�
∆x2

}
Hn

(√
mωs

�
∆x

)
.

Here ∆x = x − ξ cos ωt, N� is a normalization factor, n ∈ Z+. The condition (17) yields the
spectrum of quasi-energies En for the functions (61) as

En = −1
4
eEξ + κ̃V0 + �

(
ωs − ηω2

nl

2ωs

)(
n +

1
2

)
+ O

(
�

3/2
)
, (62)

and the Aharonov–Anandan geometric phase is

γEn =
T

2�
mω2ξ2 + O

(
�

3/2
)
. (63)
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6 Concluding remarks

The spectrum of quasi-energies (52) includes the sum of energies of three oscillators with shifted
combined frequencies ω± and ωs the shift of which depends on nonlinearity. The geometric
phase (55) in the approximation O(�3/2) under consideration does not include quantum correc-
tions and nonlinearity. Similar is true for the one-dimensional case (62), (63). The following
explanation to this can be proposed. The nonlinearity and the quantity � in this approximation
do not enter to the solution (37), (38) of the Hamiltonian system (35) that specifies the geom-
etry of the physical system. As a consequence, the geometric phase also does not include these
quantities. In addition, the geometric phase for the three-dimensional case (55) (if ωH = 0) is
twice as large as that for the one-dimensional case (63) since the centroid motion of the field Ψ
is plane in the three-dimensional case (see (37), (38)).

In the limit T → ∞ (ω → 0) the operator Ĥ(t) of the form (6) (in the three-dimensional
case) and (56) (in the one-dimensional case) does not depend on t any more and we denote
lim

ω→ 0
Ĥ(t) = Ĥ. Then the expressions (51), (52) and (61), (62) determine the discrete spectral

series of the nonlinear spectral problem

(Ĥ + κV̂ (Ψ)}Ψ = EΨ.

This corresponds to a stationary solution of the Hamilton–Ehrenfest system (35), (36) and (58),
(59), respectively (see also [10]).
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V.51, N 5(11), 1492–1495 (in Russian).

[4] Ritus V.I., Atomic level shift and splitting by the electromagnetic field, Ž. Éksper. Teoret. Fiz., 1966, V.51,
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