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We derive a formula for the leading terms of formal conservation laws (and hence for the
leading terms of higher order cosymmetries as well) for a large class of odd order evolution
systems in (1+1)-dimensions. This result yields a simple proof of locality for hierarchies of
symmetries generated using master symmetries and recursion operators of such systems.

Introduction

It is well known that members of integrable hierarchies of systems of partial differential equations
(PDEs) usually have an infinite number of common conservation laws, see e.g. [1–4]. The latter
are typically extracted from the Lax pair or zero curvature representation for the system in
question, cf. e.g. [4].

On the other hand, one often has to deal with the inverse problem, that is, to check whether
a given conserved density or, more broadly, a cosymmetry [1] (in other terminology, a conserved
covariant [5]) is indeed shared by the evolution systems associated with the symmetries of the
original system. For instance, we may need to verify whether a given physical quantity (charge,
momentum, etc.) is invariant under the higher flows of the hierarchy. This is also required when
we wish to verify locality of the hierarchy of symmetries produced by the repeated application
of a recursion operator or by the repeated commutation with a master symmetry, cf. [2,3,6–11].

Checks of this kind can be quite a difficult task, especially when no Lax pair or zero cur-
vature representation for the system in question is yet found. A possible workaround is to use
scaling-based arguments, see e.g. [12], but then one has to know the weights of all (homogeneous)
cosymmetries for the system in question. Finding these weights is a fairly nontrivial problem,
and in the present paper we solve it for the odd order evolution systems in (1+1) dimensions.

First of all, we derive, under some minor technical assumptions, an explicit formula (8) for
the leading terms of formal conservation laws for such systems, see Lemma 1 for details. As the
directional derivative of a cosymmetry is a formal conservation law, this yields the formula (10)
for the weight of any homogeneous cosymmetry of sufficiently high order.

With this in mind, we can find when a homogeneous cosymmetry is shared by the flow asso-
ciated with a given (homogeneous) symmetry, i.e., when the Lie derivative of this cosymmetry
along the symmetry in question vanishes, see Lemma 2 below for details. Using this result, we ob-
tain new easily verifiable sufficient conditions ensuring the locality of symmetries generated with
usage of recursion operator or master symmetry, see Propositions 1 and 3 and Corollaries 1 and 2.

For the hierarchies generated using hereditary recursion operators one can [7, 8, 10] prove
locality without finding weights of all cosymmetries. Unfortunately, the check of hereditariness
can be quite difficult by itself, especially for the multicomponent systems. Proposition 1 and
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Corollary 1 of the present work enable one to avoid this check altogether and prove the locality
of corresponding hierarchy in a simple and straightforward manner.

The absence of immediate analog of hereditariness for master symmetries makes the technique
of [7,8] useless for proving locality of the associated hierarchies. If the only nonlocalities in master
symmetries are linear combinations of potentials of the so-called canonical conservation laws,
we can prove locality of generated symmetries using the results from [11]. However, if master
symmetries involve other nonlocalities as well, one needs other methods for proving locality of
symmetries, and the one presented below in Proposition 3 and Corollary 2 provides a convenient
and easy-to-use alternative.

1 Basic definitions and structures

Consider an evolution system with constraints (cf. [13–15])

∂u

∂t
= F (x, t,u,u1, . . . ,un′ , �ω), (1)

∂ωκ/∂x = Xκ(x, t,u,u1, . . . ,uh, �ω), (2)
∂ωκ/∂t = Tκ(x, t,u,u1, . . . ,uh, �ω). (3)

Here u = (u1, . . . , us)T , u0 ≡ u, ul = ∂lu/∂xl, l = 1, 2, . . . , �ω = (ω1, . . . , ωc)T , κ = 1, . . . , c.
The superscript T here and below stands for the matrix transposition.

Let Aj be an algebra (with respect to the standard multiplication) of locally analytic functions
of x, t,u, . . . ,uj , ω1, . . . , ωc, cf. [13]. Set A =

⋃∞
j=1 Aj . In what follows we assume that Xκ,

Tκ ∈ A for all κ = 1, . . . , c.

Let Dx ≡ D = ∂/∂x +
∞∑
i=0

ui+1∂/∂ui +
c∑

κ=1
Xκ∂/∂ωκ and Dt = ∂/∂t +

∞∑
i=0

Di(F )∂/∂ui +
c∑

κ=1
Tκ∂/∂ωκ be the operators of total derivatives on A, cf. [13–15].

As in [13–15], we require that [D,Dt] = 0 or, equivalently, Dt(Xκ) = D(Tκ) for all κ =
1, . . . , c. In what follows we tacitly assume that the kernel of D in A is exhausted by the
functions of t alone. We shall employ the notation ImD for the image of D in A.

Consider the set Matp(A)[[D−1]] of formal series in powers of D of the form H =
q∑

j=−∞
hjD

j ,

where hj are p× p matrices with entries from A. The greatest m ∈ Z such that hm �= 0 is called

the degree of H (deg H
def= m). If dethm �= 0, then H is called nondegenerate. We assume that

deg 0 = −∞, cf. e.g. [2].

For A =
k∑

i=−∞
aiD

i define [16, 2] its formal adjoint A† def=
k∑

i=−∞
(−D)i ◦ aT

i . Here ◦ stands for

the multiplication generalizing the well-known Leibniz rule of calculus. For monomials it reads

aDi ◦ bDj = a

∞∑
q=0

i(i− 1) · · · (i− q + 1)
q!

Dq(b)Di+j−q.

It is extended by linearity to the whole Matp(A)[[D−1]] and makes it into an algebra [2,16]. The
commutator [A,B] = A ◦ B − B ◦ A further makes Matp(A)[[D−1]] into a Lie algebra. In the
sequel we shall omit ◦ unless this leads to confusion.

The directional derivative �f ′ of �f ∈ Aq is defined as (cf. [13])

�f ′ =
c∑

β,κ=1

∂ �f

∂ωβ

(
(D −W )−1

)
βκ

◦
h∑

j=0

∂Xκ/∂uj ◦Dj +
∞∑
i=0

∂ �f

∂ui
Di.



240 A. Sergyeyev

Here W is a c× c matrix with the entries ∂Xα/∂ωβ , and (D−W )−1 = D−1 ◦(
I−W ◦D−1

)−1 =

ID−1 +D−1 ◦W ◦D−1 + · · · ≡ ID−1 +
−2∑

j=−∞
WjD

j , where Wj are c × c matrices with entries

from A and I denotes a c× c unit matrix. In other words, for the entries of (D−W )−1 we have

((D −W )−1)αβ ≡ δαβD
−1 +

−2∑
j=−∞

(Wj)αβD
j ,

where (Wj)αβ is the (α, β)-th entry of the matrix Wj , and δαβ is Kronecker delta.
Clearly, for K ∈ As we have K ′ ∈ Mats(A)[[D−1]], so we can define the formal order of

G ∈ As as fordG
def= deg G′.

Next, define [1, 2] the Lie bracket for K,H ∈ As as [K,H] = H ′[K] − K ′[H]. It is skew-
symmetric, but in general for K,H ∈ As the Lie bracket [K,H] is not obliged to belong to As

unless A = Aloc, where Aloc is a subalgebra of local (that is, independent of �ω) functions in A.
Note that the restriction of the Lie bracket [·, ·] to As

loc satisfies the Jacobi identity, see e.g. [2].
Following [1, 2], we say that G ∈ As is a symmetry for (1)–(3), if

∂G/∂t+ [F ,G] = 0, (4)

or equivalently [14]

Dt(G) − F ′[G] = 0.

Let S(k)
F (A) = {G ∈ As|∂G

∂t +[F ,G] = 0 and fordG ≤ k}, SF (A) =
⋃∞

j=0 S
(j)
F (A), AnnF (A) =

{G ∈ SF (A)|∂G/∂t = 0}, and F ′ ≡
n∑

i=−∞
φiD

i, where n = fordF . Set

n0 =
{

1 − j, if φ′i = 0 for i = n− j, . . . , n,
2 otherwise.

A formal conservation law of rank m for (1)–(3) is [16, 2] a formal series L ∈ Mats(A)[[D−1]]
such that

deg(Dt(L) + L ◦ F ′ + (F ′)† ◦ L) ≤ deg F ′ + deg L −m. (5)

Likewise, a formal symmetry of rank m for (1)–(3) is [16,2] a formal series L ∈ Mats(A)[[D−1]]
such that

deg(Dt(L) − [F ′,L]) ≤ deg F ′ + deg L −m. (6)

Recall [5, 1] that γ ∈ As is called a cosymmetry (or a conserved covariant) for (1)–(3) if

Dt(γ) + (F ′)†(γ) = 0. (7)

Set CSF (A) = {γ ∈ As|Dt(γ) + (F ′)†(γ) = 0} and SCSF (A) = {γ ∈ CSF (A)|∂γ/∂t = 0}.
If fordγ ≡ deg γ ′ = r ≥ n0, then γ ′ is easily seen to be a formal conservation law of rank

r − n0 + 2. Likewise, if G is a symmetry of (1)–(3) of formal order k ≥ n0, then G′ is a formal
symmetry of rank k − n0 + 2, cf. [16, 17].

Define (see e.g. [2, 3]) the operator of variational derivative

δ/δu =
∞∑

j=0

(−D)j ∂

∂uj
.

If ρ ∈ Aloc is a conserved density for (1)–(3), that is, Dt(ρ) = D(σ) for some σ ∈ Aloc, then
γ = δρ/δu is a cosymmetry for (1)–(3), cf. e.g. [5, 16].
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2 NWD systems

Let Φ denote the leading coefficient of F ′ (so F ′ ≡ ΦDn + · · · ). Suppose that n = deg F ′ ≥ 2
and Φ is diagonalizable, i.e., there exists a matrix Γ such that Λ = ΓΦΓ−1 is diagonal, Λ =
diag(λ1, . . . , λs). Further assume that det Φ �= 0 and λi �= λj if i �= j. Following [17], we shall
call the systems (1)–(3) that enjoy these properties nondegenerate weakly diagonalizable (NWD),
because for such systems there exists [16, 17] a unique formal series

T = Γ +
−∞∑

j=−1

ΓjΓDj ∈ Mats(A)[[D−1]]

with the property diag Γj = 0, j = −1,−2, . . . , such that all coefficients of the formal series
V = TF ′T−1 +Dt(T)T−1 are diagonal matrices. Notice that any system (1)–(3) with s = 1 is
(trivially) NWD with T = 1.

We have V ≡ ΛDn + ΨDn−1 + · · · , where Ψ is a diagonal matrix by construction, so Ψ ≡
diag(ψ1, . . . , ψs), ψi ∈ A. For i such that ψi/λi ∈ ImD let zi ∈ A be solutions of the equations
D(zi) = ψi/λi.

Lemma 1. Let (1)–(3) be an NWD system with odd n ≡ deg F ′ ≥ 3. Then any its formal
conservation law L of degree k and of rank m ≥ 2 can be written in the form

L = T† ◦ (bkΛk/nDk + dkD
k−1) ◦ T + N, deg N < k − 1. (8)

Here Λk/n = diag(λk/n
1 , . . . , λ

k/n
s ), bk = diag(c1(t) exp(2z1/n), . . . , cs(t) exp(2zs/n)), dk is a dia-

gonal s× s matrix; ci(t) = 0 if ψi/λi �∈ ImD.

Proof. Set L̃ = (T†)−1 ◦ L ◦ T−1. Then equation (5) is [16] equivalent to the following:

deg(Dt(L̃) + L̃ ◦ V + V† ◦ L̃) ≤ deg F ′ + deg L̃ −m. (9)

Let L̃ ≡ LkD
k +Lk−1D

k−1 + · · · . Then equating to zero the coefficient at Dn+k in (9) yields
[Lk,Λ] = 0, hence Lk is diagonal: Lk = diag(h1, . . . , hs).

Diagonal entries of the matrix [Lk−1,Λ] are zeros, so equating to zero the diagonal part of
the coefficient at Dm+k−1 in (9) yields

khiD(λi) − nλiD(hi) + 2hiψi = 0, i = 1, . . . , s.

Solving these equations yields hi = ci(t)λ
k/n
i exp(2zi/n), where ci are arbitrary functions of t; if

ψi/λi �∈ ImD for some i, then we have ci = 0 for these values of i.
Finally, equating to zero the antidiagonal part of the coefficient at Dm+k−1 in (9) yields

[Lk−1,Λ] = 0, so Lk−1 is a diagonal matrix. �

Notice that using (8) for L = γ ′ one can readily find the form of leading terms for cosymme-
tries γ of formal order q ≥ n0. This complements known results (cf. e.g. [16,18,19]) and can be
very useful e.g. while searching for cosymmetries and conserved densities for (1)–(3).

Remark 1. If ψi/λi �∈ ImD for all i = 1, . . . , s, then the system (1)–(3) has no formal conser-
vation laws from Mats(A)[[D−1]] of rank m ≥ 2 [16]. However, if (1)–(3) has a nondegenerate
formal symmetry of rank not lower than n + 2, then [16] χi ≡ ψi/λi satisfy Dt(χi) = D(ξi),
where ξi ∈ A, for all i = 1, . . . , c, and we can proceed as follows.

Let I0 be the set of all i ∈ {1, . . . , c} such that χi �∈ ImD. Next, let I be a maximal subset
of I0 such that χi for i ∈ I are linearly independent. Introduce additional nonlocal variables ω̃i,
i ∈ I, such that ∂ω̃i/∂t = ξi and ∂ω̃i/∂x = χi. Then χi ∈ ImD, as χi = D(ω̃i), so we can set
zi = ω̃i, and moreover [20], kerD is still exhausted by functions of t, so Lemma 1 remains valid
in this extended setting.



242 A. Sergyeyev

3 Homogeneous cosymmetries of NWD systems

Following the literature (cf. e.g. [5,1,7]), define the Lie derivatives along G ∈ As by the following
formulae: a) LG(f) = f ′[G] for f ∈ A, b) LG(H) = [G,H] for a symmetry H, c) LG(γ) =
γ ′[G] + (G′)†(γ) for a cosymmetry γ.

Let (1)–(3) be an NWD system such that ∂Xκ/∂t = ∂Tκ/∂t = 0 for all κ = 1, . . . , c. Consider
a scaling vector field S = xu1+βu, where β is a constant. A function f ∈ A such that ∂f/∂t = 0
(resp. some other quantity X (a symmetry, a cosymmetry etc.) such that ∂X/∂t = 0) is called
S-homogeneous of weight µ if LS(f) − xD(f) = µf (resp. LS(X ) = µX ) for some constant µ.
We write this as wt f = µ (resp. wtX = µ), cf. e.g. [7, 8].

Motivated by the prototypic example of the Korteweg–de Vries equation ut = u3 + uu1, let
us introduce the following

Definition 1. Let (1)–(3) be an NWD system such that a) ∂Xκ/∂t = ∂Tκ/∂t = 0 for all
κ = 1, . . . , c; b) n ≡ deg F ′ is odd and n ≥ 3; c) ∂Φ/∂t = 0 (recall that Φ is the leading
coefficient of F ′). Further assume that there exists a scaling S = xu1 + βu, where β is a
constant, such that a) all entries of Φ are S-homogeneous, all of them have the same weight α̃,
and α̃ �= −n; b) it is possible to choose zi, introduced in the previous section, in such a way
that ∂zi/∂t = 0, exp(2zi/n) are S-homogeneous, and wt(exp(2zi/n)) = wt(exp(2zj/n)) for all
i, j = 1, . . . , s. Then we shall call the system (1)–(3) weakly KdV-like with the scaling S.

Remark 2. Let ζ ∈ SCSF (A) be an S-homogeneous time-independent cosymmetry of a weakly
KdV-like system (1)–(3), and k ≡ deg ζ′ ≥ n0. Then it is immediate from (8) that

wt(ζ) = wt(exp(2z1/n)) + ((α̃+ n)/n)k + 2β − 1. (10)

Note that this formula is very useful on its own, for instance, for finding nonlocal parts of
recursion operators and master symmetries for weakly KdV-like systems, cf. [7, 8].

Lemma 2. Assume that (1)–(3) is weakly KdV-like with a scaling S. Let L be a subspace of
SCSF (A), and ML = {ζ ∈ L|deg ζ′ < n0 and ζ is S-homogeneous}.

Then LP (γ)=0 for any S-homogeneous P ∈AnnF (A) and any S-homogeneous γ∈SCSF (A)
such that LP (γ) ∈ L, p ≡ fordP ≥ n0, wt ζ �= p(α̃ + n)/n + wt γ for all ζ ∈ ML, ζ �= 0, and
either p is odd and deg γ ′ ≥ n0 or there exists no integer j such that j = p+ n(wt γ − 2β + 1−
wt(exp(2z1/n)))/(α̃+ n) and n0 ≤ j ≤ max(p+ n0 − 2, p+ deg γ ′).

Proof. Consider first the case when p is odd and deg γ′ ≥ n0. Using (10) and the formula
wt(P ) = p(α̃ + n)/n from [17], we obtain wtLP (γ) = wt(P ) + wt(γ) = wt(exp(2z1/n)) +
2β − 1 + (p + deg γ ′)(α̃ + n)/n. On the other hand, as p is odd and deg γ′ ≥ n0, a straight-
forward computation with usage of (8) shows that deg(LP (γ))′ ≤ p + deg γ ′ − 1. Along with
our assumption that LP (γ) ∈ L, this implies that deg(LP (γ))′ < n0, and thus LP (γ) ∈ ML.
Indeed, otherwise (10) yields wtLP (γ) = wt(exp(2z1/n)) + 2β − 1 + deg(LP (γ))′(α̃ + n)/n �=
wt(exp(2z1/n)) + 2β − 1 + (p+ deg γ ′)(α̃+ n)/n. Thus, LP (γ) ∈ ML, but wt ζ �= wtLP (γ) =
wt(exp(2z1/n)) + 2β − 1 + (p+ deg γ ′)(α̃+ n)/n for all ζ ∈ ML, ζ �= 0, and hence LP (γ) = 0.

Likewise, if there is no integer j such that j = p+n(wt γ − 2β+1−wt(exp(2z1/n)))/(α̃+n)
and n0 ≤ j ≤ max(p + n0 − 2, p + deg γ ′), then there exists no S-homogeneous cosymmetry
ζ ∈ L with deg ζ′ ≥ n0 such that wtLP (γ) = wt ζ, so LP (γ) ∈ ML, and proceeding as above
we conclude that LP (γ) = 0. �

4 Applications to recursion operators and master symmetries

Recall [5, 2, 1] that R ∈ Mats(A)[[D−1]] is called a (adjoint) recursion operator for (1)–(3),
if Dt(R) − [F ′,R] = 0 (resp. Dt(R) + [(F ′)†,R] = 0), and a (inverse) Noether operator, if
Dt(R) − R ◦ (F ′)† − F ′ ◦ R = 0 (resp. Dt(R) + R ◦ F ′ + (F ′)† ◦ R = 0).
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Consider an operator of the form

R =
r∑

i=0

aiD
i +

k∑
κ=1

Gκ ⊗D−1 ◦ γκ, (11)

where r ≥ 0, ai are s × s matrices with local entries, Gκ ∈ As
loc, γκ = δρκ/δu, and ρκ ∈ Aloc

are local conserved densities for (1)–(3), i.e., Dt(ρκ) = D(σκ) for some σκ ∈ Aloc.

Proposition 1. Suppose that a weakly KdV-like system (1)–(3) with a scaling S has a recursion
(resp. inverse Noether) operator of the form (11) with γκ ∈ SCSF (Aloc), and the requirements
of Lemma 2 are met for a symmetry P ∈ AnnF (Aloc) and for all cosymmetries γκ, κ = 1, . . . , k.

Then R(P ) ∈ SF (Aloc) (resp. R(P ) ∈ CSF (Aloc)), i.e., R(P ) is again a local symmetry
(resp. cosymmetry) for (1)–(3).

Proof. We have to prove that γκ · P = D(ηκ) for some local ηκ, or equivalently [2] that
δ(γκ·P )/δu = (γ ′

κ)†(P )+(P ′)†(γκ) = 0. But by Lemma 2 LP (γκ) = 0, so (P ′)†(γκ) = −γ ′
κ[P ],

whence δ(γκ · P )/δu = ((γ ′
κ)† − γ ′

κ)(P ). As γκ = δρκ/δu implies (see e.g. [5]) (γ ′
κ)† = γ ′

κ, we
have δ(γκ · P )/δu = 0, as desired. �

Consider now an operator of the form

N =
r∑

i=0

biD
i +

k∑
κ=1

γκ ⊗D−1 ◦ Gκ, (12)

where r ≥ 0, bi are s × s matrices with local entries, γκ ∈ As
loc, Gκ ∈ AnnF (Aloc) are time-in-

dependent local symmetries for (1)–(3). In complete analogy with Proposition 1 we obtain the
following result.

Proposition 2. Let a weakly KdV-like system (1)–(3) with a scaling S have an adjoint recursion
(resp. Noether) operator N of the form (12). Assume that the requirements of Lemma 2 are
met for a local time-independent cosymmetry ζ ∈ SCSF (Aloc) and for all symmetries Gκ,
κ = 1, . . . , k, and let ζ = δχ/δu for some local function χ.

Then N(ζ) is again a local cosymmetry (resp. symmetry) for (1)–(3).

Now let us turn to the case when (1)–(3) has a master symmetry of degree one or equiva-
lently [6] a symmetry linear in time t.

Proposition 3. Let a weakly KdV-like system (1)–(3) with a scaling S be such that ∂F /∂t = 0,
∂F /∂ωκ = 0 and Xκ, Tκ ∈ Aloc for all κ = 1, . . . , c. Further suppose that (1)–(3) has a

symmetry K = τ + t[τ ,F ] ∈ SF (A), where τ = τ 0 +
c∑

κ=1
W κωκ, τ 0 ∈ As

loc, ∂τ 0/∂t = 0, and

W κ ∈ AnnF (Aloc) for all κ = 1, . . . , c. Let the requirements of Lemma 2 be met for a local time-
independent symmetry P ∈ AnnF (Aloc) and for all cosymmetries γκ = δXκ/δu ∈ SCSF (Aloc)
with κ ∈ {1, . . . , c} such that W κ �= 0. Finally, suppose that [P ,W κ] = 0 for all κ = 1, . . . , c.

Then [K,P ] is again a local symmetry for (1)–(3).

Proof. By virtue of the assumptions made [τ ,F ] is local [11], and hence so is [[τ ,F ],P ]. Since
[P ,W κ] = 0, it remains to prove that ω′

κ[P ] are local or, equivalently, that δ(γκ · P )/δu = 0
for all κ = 1, . . . , c such that W κ �= 0. This is done as in the proof of Proposition 1 above. �

Let adH(G) ≡ [H,G]. Set Qj = adj
K(P ). Clearly, under minor technical assumptions the

repeated application of Proposition 1 (resp. Proposition 3) enables one to prove locality for all
symmetries Rj(P ) (resp. Qj), j = 1, 2, . . . , where R is a recursion operator for (1)–(3). In
particular, the following assertions hold.
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Corollary 1. Under the assumptions of Proposition 1 suppose that R is a recursion operator
for (1)–(3), r is even, the coefficients of R are time-independent, and R is S-homogeneous
of some weight µ, i.e., LS(R) ≡ R′[S] − [S′,R] = µR. Further assume that p ≡ fordP
is odd, and for any j ∈ N and all κ = 1, . . . , k LRj(P )(γκ) ∈ L, deg γκ ≥ n0, and wt ζ �=
(p+ rj + deg γ ′

κ)(α̃+ n)/n+ wt(exp(2z1/n)) + 2β − 1 for all ζ ∈ ML, ζ �= 0.
Then the symmetries Rj(P ) are local for all j = 1, 2, 3, . . . .

Corollary 2. Under the assumptions of Proposition 3 suppose that q−n is even, τ is S-homo-
geneous, i.e., [S, τ ] = µτ for some constant µ, q = ford[τ ,F ] > max(ford τ , n), p ≡ fordP > n,
p is odd, [Qj ,W κ] = 0 and [Qj , [τ ,F ]] = 0 for all κ = 1, . . . , c and all j = 0, 1, . . . , b−1. Further
assume that for all j = 0, . . . , b−1 and all κ = 1, . . . , c such that W κ �= 0 we have LQj

(γκ) ∈ L,
deg γκ ≥ n0, and wt ζ �= (p + (q − n)j + deg γ ′

κ)(α̃ + n)/n + wt(exp(2z1/n)) + 2β − 1 for all
ζ ∈ ML, ζ �= 0.

Then Qj = adj
K(P ) are local for all j = 1, 2, . . . , b.

Thus, proving locality for the hierarchies generated using master symmetries is slightly more
complicated, as we must proceed inductively and make sure that the conditions of Corollary 2 are
satisfied for all b = 1, 2, 3, . . . . However, this considerably simplifies verification of the relations
[Qj ,W κ] = 0 and [Qj , [τ ,F ]] = 0, because we can use the information on locality obtained
at the previous step. There are various ways of proving these relations, see e.g. Proposition 5
of [17] for a scaling-based approach. Note that the conditions q = ford[τ ,F ] > max(ford τ , n)
and p > n in Corollary 2 ensure [17] that fordQj+1 > fordQj .

5 Examples

Example 1. Consider the Hirota–Satsuma system (see [21,7] and references therein)

ut = (1/2)u3 + 3uu1 − 6vv1, vt = −v3 − 3uv1.

and its recursion operator

R =
(
D3/2 +D ◦ u+ uD D ◦ v + vD

D ◦ v + vD D3/2 +D ◦ u+ uD

)
◦

(
D/2 +D−1 ◦ u+ uD−1 −2D−1 ◦ v

−2vD−1 −2D

)
.

The nonlocal part of this operator can be written [7] as R− = G1 ⊗D−1 ◦ γ1 + G2 ⊗D−1 ◦ γ2,
where G1 = ((1/2)u3 + 3uu1 − 6vv1,−v3 − 3uv1)T , G2 = (u1, v1)T , γ1 = (1, 0) = δρ1/δu for
ρ1 = u, γ2 = (u,−2v) = δρ2/δu for ρ2 = u2/2− v2. It is immediate that the system in question
is weakly KdV-like with the scaling S = xu1 + 2u, and the requirements of Proposition 1 are
met for any x, t-independent local S-homogeneous generalized symmetry P of odd formal order
not lower than one, if we set L = {ζ ∈ SCSF (Aloc)|∂ζ/∂x = 0}, and thus the symmetries
Rj(P ) are local for all j = 1, 2, . . . . In particular, Rj(Gκ) are local for all j ∈ N and κ = 1, 2.

Example 2. Consider an NWD system with constraints made up from the Schwarzian Kor-
teweg–de Vries equation ut = u3 − (3/2)u2

2/u1, see e.g. [3, 7] and references therein, and the
equations defining the potential ω of the conserved density ρ = (1/2)u2

2/u
2
1:

ut = u3 − (3/2)u2
2/u1,

∂ω/∂t = u2u4/u
2
1 − (1/2)u2

3/u
2
1 − 2u2

2u3/u
3
1 + (9/8)u4

2/u
4
1, ∂ω/∂x = (1/2)u2

2/u
2
1.

It is weakly KdV-like with the scaling S = xu1 and satisfies the requirements of Proposition 3
with P being any x, t, u-independent local S-homogeneous symmetry of odd formal order not
lower than three, L = {ζ ∈ SCSF (Aloc)|∂ζ/∂x = 0 and ∂ζ/∂u = 0}, and master symmetry
τ = u2 + x(u3 − (3/2)u2

2/u1) − u1ω. Hence by Proposition 3 and Corollary 2 the symmetries
adj

K(u3 − (3/2)u2
2/u1) = adj

τ(u3 − (3/2)u2
2/u1) are local for all j = 1, 2, . . . .



Structure of Cosymmetries and Locality of Symmetries of Odd Order Systems 245

Acknowledgements

This research was supported by the Jacob Blaustein postdoctoral fellowship and, in part, by the
Ministry of Education, Youth and Sports of Czech Republic under grant MSM:J10/98:192400002
and by the Czech Grant Agency under grant No. 201/00/0724. I also acknowledge with gratitude
the partial support of DFG via Graduiertenkolleg “Geometrie und Nichtlineare Analysis” at
Institut für Mathematik of Humboldt-Universität zu Berlin, Germany, as the present work was
initiated when I held a postdoctoral fellowship there in 2001.

[1] B�laszak M., Multi-Hamiltonian theory of dynamical systems, Heildelberg, Springer, 1998.

[2] Olver P., Applications of Lie groups to differential equations, New York, Springer, 1993.

[3] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Chichester, John Wiley &
Sons, 1993.

[4] Takhtajan L.A. and Faddeev L.D., Hamiltonian methods in the theory of solitons, Berlin, Springer, 1987.

[5] Fuchssteiner B. and Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary sym-
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