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Korteweg–de Vries equation with coefficients depending on a small parameter is studied.
The asymptotical expansions for one-phase soliton-type solutions are constructed.

1 Introduction

Korteweg–de Vries equation is one of the most known nonlinear differential equation and is
a fundamental one of modern physics. It was deduced by D.J. Korteweg and G. de Vries [1] in
order to describe so-called solitary waves firstly observed by J. Scott-Russel [2] in 1834.

The secondary discovery of this outstanding equation is connected with attempt to solve
famous Fermi–Pasta–Ulam problem [3] in 1965, when M.D. Kruskal and N.J. Zabusky [4] found
relation of the system of nonlinear oscillators of Toda type to the Korteweg–de Vries equation.
Later it appeared as object for studying in different fields of physics, hydrodynamics, solid body
theory, plasma theory, quantum mechanics and others [5, 6].

During the last 35 years a lot of papers were devoted to consideration of different properties
of solutions to the Korteweg–de Vries equation, in particular, to finding its solutions in exact
form via the inverse scattering transform initiated by C.S. Gardner, J.M. Green, M.D. Kruskal,
R.M. Miura and P.D. Lax [7, 8] and developed in [9–12].

On the other hand, while considerating processes with small dispersion a problem of studying
Korteweg–de Vries equation with varying coefficients and a small parameter arises. Similar prob-
lems can be researched through one of approaches developed on the base of a small parameter
technique being well-known to be effective in studying different nonlinear problems [13,14].

2 Statement of a problem and preliminary notes

We consider Korteweg–de Vries equation with varying coefficients and a small parameter of the
following form

uxxx = a(x, ε)ut + b(x, ε)uux. (1)

Functions a(x, ε), b(x, ε) are assumed to be represented as

a(x, ε) =
1
ε

∞∑
k=0

ak(x)εk, b(x, ε) =
1
ε

∞∑
k=0

bk(x)εk,

where x ∈ R
1, t ∈ (0;T ), ak(x), bk(x) ∈ C(∞)(R1), k ≥ 0.

By using the approach proposed in [15–18] we develop an algorithm for constructing asymp-
totical solutions to problem (1).

Let us consider infinite differentiable functions f = f(x, t, τ), (x, t, τ) ∈ (R1
x × (0;T ) × R

1
t ),

such that for any compact K ⊂ R
1
x × (0;T ) and any non-negative integer numbers n, m, q, α

uniformly with respect to variables (x, t) the following conditions are fulfilled:
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1) the relation

lim
τ→∞ τn ∂m+q+α

∂xm∂tq∂τα
f(x, t, τ) = 0 (2)

takes place;
2) there exists an infinite differentiable function f−(x, t) such that

lim
τ→−∞ τn ∂m+q+α

∂xm∂tq∂τα

[
f(x, t, τ) − f−(x, t)

]
= 0, (x, t) ∈ K. (3)

Let the linear space of such functions f = f(x, t, τ), (x, t, τ) ∈ (R1
x × (0;T )×R

1
t ) be denoted

G = G(R1
x × (0;T ) × R

1
τ ).

Let G0 = G0(R1
x × (0;T ) × R

1
τ ) be a linear subspace of the space G = G(R1

x × (0;T ) × R
1
τ )

consisting of functions f(x, t, τ) satisfying on every compact K ⊂ R
1
x× (0;T ) additionally to the

conditions (2), (3) the equality

lim
τ→−∞ f(x, t, τ) = 0, (x, t) ∈ K,

is satisfied uniformly with respect to (x, t).

Definition 1. A function u = u(x, t, ε) is called one-phase soliton-type one if for any integer
N ≥ 0 function u(x, t, ε) can be represented as

u(x, t, ε) =
2N∑
k=0

ε
k
2 [uk(x, t) + vk(x, t, τ)] +O

(
εN+1

)
, (4)

where τ = x−ϕ(t)√
ε

, ϕ(t) ∈ C(∞)(0;T ) is a scalar real function; functions uk(x, t) are infinite
differentiable; v0(x, t, τ) ∈ G0, vk(x, t, τ) ∈ G, k = 1, 2, . . . , 2N .

Function S = x− ϕ(t) is called a phase of one-phase soliton-type solution (4).

Below we propose algorithm of constructing asymptotical solution to the equation (1). Firstly
we establish a form of asymptotical solution to problem (1). In particular, it is not complicated
to prove that asymptotical solution to the problem (1) can be represented as

u(x, t, ε) = Ū(x, t, ε) +
√
εGε(S, x, t) +

√
εFε(S, x, t),

where Ū(x, t, ε) is infinite differentiable function; Gε(S, x, t), Fε(S, x, t) are infinite differentiable
functions sufficiently quickly tending to zero as |x| → ∞ and satisfying conditions

‖√εGε(S, x, t)‖C ≤ C1, ‖Fε(S, x, t)‖C ≤ C2

with constants C1, C2 not depending on ε and norm ‖ · ‖C of continuous in (x, t) ∈ R
1
x × [0;T ]

function space.

3 Scheme of constructing asymptotical solution

Solution to the equation (1) is searched in the form of following asymptotical series:

u(x, t, ε) = YN (x, t, τ, ε) +O
(
εN+1

)
, (5)

where

YN (x, t, τ, ε) =
2N∑
k=0

ε
k
2 [uk(x, t) + vk(x, t, τ)] , τ =

x− ϕ(t)√
ε

.
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Function UN (x, t, ε) =
2N∑
k=0

ε
k
2 uk(x, t) is a regular part of asymptotic (5), and function VN (x, t, ε)

=
2N∑
k=0

ε
k
2 vk(x, t, τ) is a singular part of asymptotic (5), i.e. YN = UN + VN .

At the first step the asymptotical solution to the problem (1) is constructed in some µ-
neighborhood of curve Γ = {(x, t) ∈ R

1 × (0;T ) : x = ϕ(t)}, i.e. in the domain:

Ωµ(Γ) = {(x, t) ∈ R
1 × (0, T ) : |x− ϕ(t)| < 2µ},

where µ is a small positive parameter, as well as a function ϕ(t) is defined later.
By direct calculations we find derivatives ut(x, t, ε), ux(x, t, ε), uxxx(x, t, ε), substitute them

into equation (1) and obtain the relation:

∂3YN

∂x3
+

3√
ε

∂3YN

∂x2∂τ
+

3
ε

∂3YN

∂x∂τ2
+

1

ε
3
2

∂3YN

∂τ3

= a(x, ε)
(
∂YN

∂t
− 1√

ε

∂YN

∂τ
ϕ′(t)

)
+ b(x, ε)

(
∂YN

∂x
+

1√
ε

∂YN

∂τ

)
YN + gN (x, t, τ, ε). (6)

Here gN (x, t, τ, ε) = O
(
εN+1

)
is an infinite differentiable function of its arguments that are

defined recursively in N .
To find equations for regular part of asymptotics from relation (6) we calculate limit as

τ → +∞ and equate coefficients at the same powers ε. As result, we have system of partial
differential equations for functions uk, k = 0, . . . , 2N :

a0(x)
∂u0

∂t
+ b0(x)

∂u0

∂x
u0 = 0,

a0(x)
∂uk

∂t
+ b0(x)u0(x, t)

∂uk

∂x
+ b0(x)uk(x, t)

∂u0

∂x
= fk(x, t, u0, u1, . . . , uk−1), (7)

where functions fk(t, x, u0, u1, . . . , uk−1), k = 1, . . . , 2N , are defined recurrently. Additionally
the equations (7) for any k = 0, . . . , 2N are assumed to have infinite differentiable solutions.

3.1 Defining singular part of asymptotics

Differential equations for singular part of asymptotics (5) are deduced from relation (6) after
reducing (7). Later functions vk(x, t, τ), k = 0, 1, . . . , 2N , are defined on the curve x = ϕ(t)
and continued into domain Ωµ(Γ). Let values of functions vk(x, t, τ), k = 0, 1, . . . , 2N , on the
curve x = ϕ(t) be denoted vk(t, τ). As result, we have the following system of partial differential
equations:

∂3v0

∂τ3
+ a0(ϕ)

∂v0

∂τ
ϕ′(t) − b0(ϕ)

[
u0(ϕ, t)

∂v0

∂τ
+ v0

∂v0

∂τ

]
= 0,

∂3vk

∂τ3
+ a0(ϕ)

∂vk

∂τ
ϕ′(t) − b0(ϕ)

[
u0(ϕ, t)

∂vk

∂τ
+ vk

∂v0

∂τ
+ v0

∂vk

∂τ

]
= Fk(t, τ), (8)

where k = 1, . . . , 2N , functions

Fk(t, τ) = Fk(t, v0(x, t, τ), . . . , vk−1(x, t, τ), u0(x, t), . . . , uk(x, t))
∣∣∣
x=ϕ(t)

are defined recurrently. Namely, first we find function v0(t, τ) from (8), later extend it into
domain Ωµ(Γ). At the next step we calculate the function

F1(t, τ) = F1(t, v0(x, t, τ), u0(x, t), u1(x, t))
∣∣∣
x=ϕ(t)

,

define function v1(t, τ), extend it into the domain Ωµ(Γ), and so on.
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3.2 Solvability of equations for singular part of asymptotics

Consider the first equation in (8). It can be written as follows (after integration in τ):

d2v0

dτ2
= −a0(ϕ)v0(ϕ, τ)ϕ′(t) + b0(ϕ)u0(ϕ, t)v0(t, τ) +

1
2
b0(ϕ)v2

0(ϕ) + c1(t). (9)

Due to condition v0(t, τ) ∈ G0, we can take c1(t) ≡ 0.
Multiplying equation (9) by dv0/dτ and integrating it in τ one receives:

(
dv0

dτ

)2

= −a0(ϕ)v2
0(t, τ)ϕ

′(t) +
1
2
b0(ϕ)v3

0(t, τ) + c2(t).

Due to condition v0(t, τ) ∈ G0 we can take c2(t) ≡ 0.
Thus, a solution to the equation (9) in the space G0 is represented as

v0(t, τ) = A[ϕ] ch−2((τ + C0)H[ϕ]), (10)

where

A[ϕ] = −2
a0(ϕ(t))ϕ′(t) − b0(ϕ(t))u0(ϕ(t), t)

b0(ϕ(t))
, H[ϕ] =

2
√
A

b0(ϕ(t))

provided that A[ϕ] > 0.
So, the following lemma is proved.

Lemma 1. Let A[ϕ] > 0. Then a solution of the first equation of system (8) in the space G0

exists and is given by formula (10).

Differential equations of system (8) for k = 1, 2, . . . , 2N can be written in the following
operator form

L̂vk = Fk, (11)

where operator L̂ is

L̂ =
∂3

∂τ3
+

[
a0(ϕ(t))ϕ′(t) − b0(ϕ(t)) − b0(ϕ(t))u0(ϕ(t), t)

] ∂

∂τ
− ∂v0

∂τ
b0(ϕ(t)).

The following lemma is true.

Lemma 2. Suppose functions Fk(t, τ) ∈ G0, k ≥ 1. Then operator equations (11) are solvable
in the space G if and only if the conditions

∫ +∞

−∞
Fk(t, τ)v0(t, τ)dτ = 0, k ≥ 1, (12)

are satisfied.

Relation (12) is called an orthogonality condition. In the case, when the orthogonality con-
dition (12) is fulfilled, the general solution to the equation (8) in the space G can be written
as

νk(t, τ) = zk(t, τ) + ckv0τ , k ≥ 1,

where ck is constant of integrability, zk(t, τ) is a particular solution to the non-homogeneous
equation (8):

zk(t, τ) = v0τ

∫ τ

−∞
v−2
0τ (t, τ1)

∫ τ1

−∞
Φk(t, τ2)v0τ (t, τ2)dτ2dτ1, k = 1, 2, . . . , 2N.
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3.3 Definition of the phase function ϕ(t)

The function of phase ϕ(t) is defined from ordinary differential equation deduced from orthog-
onality condition (12). In particular, if one takes the function

F1(t, τ) = a0(ϕ)
∂v0

∂t
+ b0(ϕ)

∂u0(x, t)
∂x

∣∣∣∣∣
x=ϕ(t)

· v0 + b0(ϕ)u1(ϕ)
∂v0

∂τ
, (13)

then after substituting function v0(t, τ) into (13) and using (12), finds

dϕ

dt
= −

∂u0(x,t)
∂x

∣∣∣
x=ϕ

b0(ϕ)A[ϕ]H2[ϕ]

2a0(ϕ)A′[ϕ]H[ϕ] −A[ϕ]H ′[ϕ]a0(ϕ)
. (14)

Since under rather general conditions on a0(x), b0(x) functions A[ϕ], H[ϕ] may be considered
to be infinite differentiable ones and consequently, the differential equation (14) may be assumed
to have unique infinite differentiable solution.

3.4 Continuation of singular part of asymptotics into domain Ωµ(Γ)

We define functions vk(x, t, τ), k ≥ 0, in the closure of domain Ωµ(Γ). For k = 0 solution
of equation (8) is deduced above (see formula (10)). For k = 1, 2, . . . , 2N a solution to the
equation (8) has a form

vk(t, τ) = νk(t)ηk(t, τ) + ψk(t, τ), k = 1, . . . , 2N,

where

lim
τ→−∞ η = 1, η ∈ G,

νk(t, τ) = − [
a0(ϕ(t))ϕ′(t) − b0(ϕ(t))

]−1 lim
τ→−∞Φk(t, τ),

Φk(t, τ) = −
τ∫

−∞
Fk(t, τ)dτ + Ek(t), lim

τ→+∞Φk(t, τ) = 0,

ψk(t, τ) = ψk,1(t, τ) + ck(t)v0τ (t, τ),

a function ψk,1 belongs to the space G0, ck(t) is a constant of integration.
Let us consider the Cauchy problem:

Λu−k (x, t) = fk(x, t),

u−k (x, t)
∣∣∣
Γ

= νk(t), k = 1, . . . , 2N, (15)

where the differential operator Λ is

Λ = a0(x)
∂

∂t
+ b0(x)u0(x, t)

∂

∂x
+ b0(x)

∂u0(x, t)
∂x

.

Since the curve Γ is transversal to a characteristics of differential operator Λ for any t ∈
[0;T ], the problem (15) is correctly posed, and because of it there exists a solution u−k (x, t) ∈
C(∞)(Ωµ(Γ)) for small enough µ.

Continuation of functions vk(t, τ), k = 0, 1, . . . , 2N into domain Ωµ(Γ) is defined as

v0(x, t, τ) = v0(t, τ), vk(x, t, τ) = u−k (x, t)η(t, τ) + ψk(t, τ).
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4 Constructing global asymptotical solution

Let us note domains

D− = {(x, t) ∈ R
1 × (0;T ) : ϕ(t) − x ≥ µ},

D+ = {(x, t) ∈ R
1 × (0;T ) : x− ϕ(t) ≥ µ}.

For all x < ϕ(t), t ∈ (0;T ), functions u−k (x, t), k = 1, . . . , 2N are defined as infinite differen-
tiable solutions to the problem (15).

Asymptotical solution to the equation (1) is found through gluing functions defined before.
Let χ(ξ) ∈ C∞(R1) : χ(ξ) = 1 if ξ ≥ 2 and χ(ξ) = 0 if ξ ≤ 1.

Thus, the following result is established.

Theorem 1. Let us suppose:
1) functions ak(x), bk(x) ∈ C(∞)(R1), k ≥ 0;
2) the inequality A[ϕ] > 0, where function ϕ(t) is a solution to the equation (14), takes place;
3) functions Fk(t, τ), k = 1, . . . , N , belong to the space G0;
4) the orthogonality condition (12) is fulfilled.
Then the function

YN (x, t, ε) =




Y −
N (x, t, ε), (x, t) ∈ D−\Ωµ(Γ),
Y +

N (x, t, ε), (x, t) ∈ D+\Ωµ(Γ),
YN (x, t, τ, ε), (x, t) ∈ Ωµ(Γ),

where

Y −
N (x, t, ε) = u0(x, t) +

2N∑
k=1

ε
k
2

[
uk(x, t) + u−k (x, t)

]
, (x, t) ∈ D−,

Y +
N (x, t, ε) =

2N∑
k=1

ε
k
2 uk(x, t), (x, t) ∈ D+,

YN (x, t, τ, ε) =
2N∑
k=0

ε
k
2 [uk(x, t) + vk(x, t, τ)] , (x, t) ∈ Γ, τ =

x− ϕ(t)√
ε

,

is an asymptotical expansion for solution to the Korteweg–de Vries equation (1) on the interval
(0;T ), i.e. for any compact K ⊂ R

1
x × (0;T )

max
(x,t)∈K

|u(x, t, ε) − YN (x, t, ε)| = O
(
εN+1

)
, N ∈ N.

5 Conclusions

In the paper the problem of constructing asymptotical solutions to the Korteweg–de Vries equa-
tion with coefficients depending on a small parameter is studied. The algorithm of constructing
asymptotical solutions is developed.
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