On Spectrum of Matrix-Valued Continuous Functions of a Family of Commuting Operators

Yevgenii Ye. SAMOILENKO

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine E-mail: sam7@imath.kiev.ua

A spectrum of matrix-valued continuous functions of a family of self-adjoint commuting bounded operators on a Hilbert space is studied.

1 Introduction

Let $\widetilde{A}=\left\{A_{i}=A_{i}^{*}\right\}_{i=\overline{1, m}} \subset L(H)$ be a family of self-adjoint commuting operators and $\left\{E_{i}\right\}_{i=\overline{1, m}}$ be a family of their spectral measures. A direct product of spectral measures is $\widetilde{E}\left(\alpha_{1} \times \alpha_{2} \times \ldots \times\right.$ $\left.\alpha_{m}\right)=\underset{i=1}{\times} E_{i}\left(\alpha_{i}\right)=E_{1}\left(\alpha_{1}\right) E_{2}\left(\alpha_{2}\right) \cdots E_{m}\left(\alpha_{m}\right)$, a measure on a measurable space. A support of decomposition of unit E is called $\operatorname{Supp} E=\{\cap \varphi \mid \varphi=\bar{\varphi}: E(\varphi)=\mathbb{I}\}$, i.e. intersection of all closed sets of full measure. A common spectrum of a family of self-adjoint commuting bounded operators is called $S(\widetilde{A})=S\left(\left\{A_{i} \mid i=\overline{1, m}\right\}\right):=\operatorname{Supp} \widetilde{E}$, i.e. the support of product of spectral measures. By definition, the following conclusion may be drawn

$$
S(\widetilde{A})=\operatorname{Supp} \widetilde{E} \subseteq \underset{i=1}{\times} \operatorname{Supp} E_{i}=\underset{i=1}{\times} \sigma\left(A_{i}\right),
$$

where $\sigma\left(A_{i}\right)$ is a spectrum of operator $A_{i}, i=\overline{1, m}$. A continuous function of a family of self-adjoint operators \widetilde{A} is

$$
f(\widetilde{A})=\int_{S(\widetilde{A})} f\left(\lambda_{1}, \ldots, \lambda_{m}\right) d \widetilde{E}(\Lambda)
$$

where $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in S(\widetilde{A}) \subset \mathbb{R}^{m}$ (see e.g. [1-4]).
Let us consider a matrix-valued continuous function $\left\{f_{i j}\left(t_{1}, t_{2}, \ldots, t_{m}\right)\right\}_{i, j=\overline{1, n}}$, where $f_{i j}\left(t_{1}\right.$, $\left.t_{2}, \ldots, t_{m}\right) \in C\left(\mathbb{R}^{m}, \mathbb{C}\right)$. The result of this paper is the formula for spectrum of matrix-valued continuous functions of a family of self-adjoint commuting bounded operators.

2 On spectrum of matrix operators

Let $G=\widetilde{F}(\widetilde{A})=\left\{F_{i j}(\widetilde{A})=F_{i j}\left(A_{1}, \ldots, A_{m}\right) \mid i, j=\overline{1, n}\right\}, G: H^{n} \rightarrow H^{n}$. Let $\widetilde{F}(\Lambda)=\left\{F_{i j}(\Lambda)\right.$ $\left.=F_{i j}\left(\lambda_{1}, \ldots, \lambda_{m}\right) \mid i, j=\overline{1, n}\right\}$ be a continuous matrix function $\widetilde{F}(\Lambda): U(S(\widetilde{A})) \rightarrow \mathbb{C}^{n \times n}$, where U is a neighborhood of S and $\widetilde{F}(\widetilde{A})$ is a function on family of self-adjoint commuting bounded operators. Denote $\Delta(G, \lambda)=\Delta(\widetilde{F}(\widetilde{A}), \lambda):=\operatorname{det}\left(\left\{F_{i j}(\widetilde{A})-\delta_{i}^{j} \lambda\right\}_{i, j=1}^{n}\right)$, where δ_{i}^{j} is a Kroneker symbol and $\Delta(\Lambda, \lambda):=\left(F_{i j}(\Lambda)-\delta_{i}^{j} \lambda\right)$, where $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in S(\widetilde{A})$.

Theorem 1. A spectrum of the operator G is equal to $\sigma(G)=\{\lambda \in \mathbb{C} \mid \exists \Lambda \in S: \Delta(\Lambda, \lambda)=0\}$.
Proof. (\Rightarrow) Let $\forall \Lambda \in S(\widetilde{A}): \Delta(\Lambda, \lambda) \neq 0$, then existence of operator $(G-\lambda \mathbb{I})^{-1}$ means existence of a solution of the system of operator equations $\sum_{j=1}^{n} F_{i j}(\widetilde{A}) x_{j}=y_{i}, i=\overline{1, n}$, where $x_{j}, y_{i} \in H$. The sufficient condition for it is existence of the operator $(\Delta(\widetilde{F}(\widetilde{A}), \lambda))^{-1}$.

From $\Delta(\Lambda, \lambda) \neq 0$ the following conclusion $\left(\widetilde{E}=\underset{i, j=1}{\times} E_{i j}\right)$ may be drawn

$$
\mathbb{I}=\int_{\mathbb{R}^{m}} d \widetilde{E}=\int_{\mathbb{R}^{m}} \Delta(\Lambda, \lambda)(\Delta(\Lambda, \lambda))^{-1} d \widetilde{E}(\Lambda)=(G-\lambda \mathbb{I}) B .
$$

It follows that $\exists(G-\lambda \mathbb{I})^{-1}=B \Rightarrow \lambda \in \rho(G)$, where ρ is a resolvent set.
(\Leftarrow) Let $\exists \Lambda \in S(\widetilde{A}): \Delta(\widetilde{F}(\Lambda, \lambda))=0$, then $\exists f$, where f is the eigenvector of operator $\widetilde{F}(\Lambda)$. Denote $\forall z \geq 1$:

$$
0 \neq f^{(z)}:=\widetilde{E}\left(\left(\lambda_{1}-\frac{1}{z}, \lambda_{1}+\frac{1}{z}\right) \times \cdots \times\left(\lambda_{m}-\frac{1}{z}, \lambda_{m}+\frac{1}{z}\right)\right) f
$$

(notice that E is a projector) and $y^{(z)}:=\frac{f^{(z)}}{\left\|f^{(z)}\right\|}$. It follows that

$$
(G-\lambda \mathbb{I}) y^{(z)}=\left(\left\{F_{i j}(\Lambda)-\lambda_{i j}\right\}_{i, j=\overline{1, n}}\right) y^{(z)}-\Delta(\Lambda, \lambda) y^{(z)} .
$$

The condition $\Delta(\Lambda, \lambda) y^{(z)}=0$ is clearly fulfilled, and

$$
\left\|\left(F_{i j}(\widetilde{A})-\lambda_{i j}\right) y_{j}^{(z)}\right\|^{2}=\int_{\mathbb{R}}\left|\alpha_{i j}-\lambda_{i j}\right|^{2} d\left(E\left(\alpha_{i j}\right) y^{(z)}, y^{(z)}\right) \rightarrow 0, \quad z \rightarrow 0
$$

And finally $\left\|(G-\lambda \mathbb{I}) y^{(z)}\right\| \rightarrow 0, z \rightarrow 0$, where $\left\|y^{(z)}\right\|=1 \Rightarrow \lambda \in \sigma(G)$.
The following proposition will be useful in examples.
Proposition 1. Let $A^{*}=A \subset L(H)$ be a self-adjoint bounded operator. Let $\widetilde{A}=\left\{f_{1}(A), \ldots\right.$, $\left.f_{n}(A)\right\}$, where $\left\{f_{i} \mid i=\overline{1, m}\right\} \subset C(U(\sigma(A)), \mathbb{R}), U$ is a neighborhood of $\sigma(A)$, then

$$
S\left(\left\{f_{1}(A), f_{2}(A), \ldots, f_{m}(A)\right\}\right)=\left\{\left(f_{1}(\lambda), f_{2}(\lambda), \ldots, f_{m}(\lambda)\right) \mid \lambda \in \sigma(A)\right\}
$$

Proof. There is $E_{i}(\alpha)=\int_{\sigma(A)} \chi\left(f_{i}(\lambda)\right) d E$, where $\chi(A)$ is the characteristic function, $i=\overline{1, m}$. Then denote a decomposition $\underset{i=1}{\underset{~}{\times}} \sigma_{i}=\operatorname{Supp} \widetilde{E} \cup \Theta$, where the common measure of any opening set with Θ is equal to zero, and the common measure of any opening set is not equal to zero if this set contains a point from Supp \widetilde{E}. Since $\widetilde{E}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)=\int_{\mathbb{R}} \chi_{\alpha_{1}}(\lambda) \cdots \chi_{\alpha_{m}}(\lambda) d E(\lambda)=0$ and $f(\sigma(A))=\sigma(f(A))$, then proposition is proved.

3 Examples

Example 1. Let $H=L_{2}([-\pi, \pi], d t)$ and $G=\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)$, and $K_{j}(t):=j e^{i t}, j=\overline{1,4}, i=\sqrt{-1}$, and $\widetilde{A}:=\left\{A_{j}=\int_{-\pi}^{\pi} K_{j}(t-\tau) x(\tau) d \tau \mid j=\overline{1,4}\right\}$ family of commuting self-adjoint bounded operators. The common spectrum of \widetilde{A} is equal to

$$
S(\widetilde{A})=\{(0,0,0,0),(2 \pi, 4 \pi, 6 \pi, 8 \pi)\}=:\left\{\Lambda_{1}, \Lambda_{2}\right\} .
$$

Let us solve the following equations $\Delta\left(\Lambda_{1}, \lambda\right)=0, \Delta\left(\Lambda_{2}, \lambda\right)=0$:

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 0 \\
0 & -\lambda
\end{array}\right)=0 \quad \text { and } \quad \operatorname{det}\left(\begin{array}{cc}
2 \pi-\lambda & 4 \pi \\
6 \pi & 8 \pi-\lambda
\end{array}\right)=0 \quad \Rightarrow
$$

\Rightarrow The spectrum of matrix operator is equal to $\sigma(G)=\{0, \pi(5 \pm \sqrt{33})\}$.

Example 2. Let $H=L_{2}([0,1], d t)$ and $f_{1}, f_{2}, f_{3}, f_{4} \in C([0,1])$. Let $\widetilde{A}=\left\{\left(A_{1} x\right)(t)=f_{1}(t) x(t)\right.$, $\left.\left(A_{2} x\right)(t)=f_{2}(t) x(t),\left(A_{3} x\right)(t)=f_{3}(t) x(t),\left(A_{4} x\right)(t)=f_{4}(t) x(t)\right\}$ be a family of self-adjoint commuting operators, then

$$
\begin{aligned}
& S\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=\left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t) \mid t \in[0,1]\right\}, \\
& G=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)=\left(\begin{array}{ll}
F_{11}(\widetilde{A}) & F_{12}(\widetilde{A}) \\
F_{21}(\widetilde{A}) & F_{22}(\widetilde{A})
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{11}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}, F_{12}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{2}, F_{21}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{3}, F_{22}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{4}, \\
& \sigma(G)=\left\{\lambda \in \mathbb{C} \mid \exists t \in[0,1]: \operatorname{det}\left(\begin{array}{cc}
f_{1}(t)-\lambda & f_{2}(t) \\
f_{3}(t) & f_{4}(t)-\lambda
\end{array}\right)=0\right\} \Leftrightarrow \\
& \Leftrightarrow \sigma(G)=\left\{\left.\frac{f_{1}(t)+f_{4}(t) \pm \sqrt{\left(f_{1}(t)+f_{4}(t)\right)^{2}+4\left(f_{2} f_{3}(t)-f_{1}(t) f_{4}(t)\right)}}{2} \right\rvert\, t \in[0,1]\right\} .
\end{aligned}
$$

Example 3. Let $\left(P_{1} x\right)(t)=t_{1} x(t),\left(P_{2} y\right)(t)=2 \pi t_{2} x(t)$ be two commuting self-adjoint bounded operators, where $x(t) \in L_{2}\left([0,1]^{2}, d t\right), t=\left(t_{1}, t_{2}\right)$. The operator $N=P_{1}\left(\cos P_{2}+i \sin P_{2}\right)$ is a normal operator $\left(N^{*} N=N N^{*}\right)$. Let us consider the subalgebra B_{V} of $C\left(D, \mathbb{C}^{2 \times 2}\right)$ of the form $B_{V}(D)=\left\{a \in C\left(D, \mathbb{C}^{2 \times 2}\right): a(z)=V^{-1}(z) a(1) V(z), i f|z|=1\right\}$, where $D=\{z \in \mathbb{C}:|z| \leq 1\}$ is the unit disk and $V(z)=\operatorname{diag}\left\{z^{-1}, 1\right\}$. The algebra $B_{V}(D)$ is an example of a non-trivial 2-homogeneous C^{*}-algebra (see [5]).

It follows that $B(N)=\left\{a(N) \mid a \in B_{V}(D)\right\}$ is an example of a non-trivial operator C^{*} algebra, because the spectrum of operator N is equal to $\sigma(N)=D$. The following conclusion may be drawn

$$
\forall a=a(N) \in B_{V}(N): a(N)=\left(\begin{array}{ll}
a_{11}(N) & a_{12}(N) \\
a_{21}(N) & a_{22}(N)
\end{array}\right)=\left(\begin{array}{ll}
a_{11}\left(f\left(P_{1}, P_{2}\right)\right) & a_{12}\left(f\left(P_{1}, P_{2}\right)\right) \\
a_{21}\left(f\left(P_{1}, P_{2}\right)\right) & a_{22}\left(f\left(P_{1}, P_{2}\right)\right)
\end{array}\right),
$$

where

$$
\begin{aligned}
& f(x, y)=x(\cos y+i \sin y), \\
& S\left(\left\{a_{i j}(N), i, j=1,2\right\}\right)=\left\{\left\{a_{i j}\left(t_{1}\left(\cos 2 \pi t_{2}+i \sin 2 \pi t_{2}\right)\right)\right\} \mid t \in[0,1]^{2}\right\}, \\
& \sigma(a(N))=\left\{\frac{a_{11}(\tau)+a_{22}(\tau)}{2}\right. \\
& \left.\left. \pm \frac{\sqrt{\left(a_{11}(\tau)+a_{22}(\tau)\right)^{2}-4\left(a_{11}(\tau) a_{22}(\tau)-a_{12}(\tau) a_{21}(\tau)\right)}}{2} \right\rvert\, \tau=f\left(t_{1}, 2 \pi t_{2}\right), t \in[0,1]^{2}\right\} .
\end{aligned}
$$

[1] Berezanskii Yu.M., Self-adjoint operators in spaces of functions of finitely many variables, Providence, AMS, 1986.
[2] Berezanskii Yu.M., Expansion in eigenfunctions of self-adjoint operators, Providence, AMS, 1968.
[3] Birman M.Sh. and Solomyak M.Z., Spectrum theory self-adjoint operators in a Hilbert space, Leningrad State University, 1980.
[4] Samơ̆lenko Yu.S., Spectral theory of families of self-adjoint operators, Kyiv, Naukova Dumka, 1984.
[5] Antonyevich A. and Krupnik N., On trivial and non-trivial n-homogeneous C^{*}-algebras, Integr. Equ. Oper. Theory, 2000, V.38, 172-189.

