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We construct a new representation to solutions of the initial value problem of the BBGKY
hierarchy of equations. Such representation of solutions enable us to describe the cluster
nature of evolution of infinite particle systems with various symmetry properties in detail.
Convergence of the constructed expansions is investigated in suitable functional spaces.

1 Introduction

Various symmetry properties of many-particle systems are generated by the indistinguishability
property of identical particles. Classical identical particles are described by observables and
states that are symmetric functions with respect to permutations of their arguments (the phase
space coordinates of every particle) [1, 2]. In the quantum case we have additional symmetry
properties related to the nature of identical particles (Fermi and Bose particles). Classical many-
particle systems can also consist of distinguishable particles. In this case many-particle systems
are described by observables and states that are non-symmetric functions of their arguments
(non-symmetrical particle systems).

The goal of this paper is to analyze the structure of expansions for the BBGKY hierarchy
solutions, which depends on the symmetry properties of many-particle systems. We construct
a new representation to solutions of the initial value problem of the BBGKY hierarchy in the
form of an expansion over particle clusters whose evolution is governed by the cumulant (semi-
invariant) of the evolution operator of the corresponding particle cluster for symmetric and
non-symmetric systems.

2 Cluster expansions of evolution operators
of symmetrical particle systems

We consider the initial value problem of the BBGKY hierarchy of equations for a classical
system of identical particles [1,2]. If F (0) = (1, F1(0, x1), . . . , Fs(0, x1, . . . , xs), . . .) is a sequence
of initial s-particle distribution functions Fs(0, x1, . . . , xs) symmetric in xi ≡ (qi, pi) ∈ R

ν × R
ν ,

ν ≥ 1, then a solution F (t) = (1, F1(t, x1), . . . , Fs(t, x1, . . . , xs), . . .) of the Cauchy problem for
the BBGKY hierarchy is represented as the expansion

Fs(t, x1, . . . , xs) =
∞∑

n=0

1
n!

∫
(Rν×Rν)n

dxs+1 · · · dxs+n A(n)(t, x1, . . . , xs; xs+1, . . . , xs+n)

× Fs+n(0, x1, . . . , xs+n), s ≥ 1. (1)

where the evolution operator A(n)(t) is defined as follows. Let (x1, . . . , xs) ≡ Y , (Y, xs+1, . . .,
xs+n) ≡ X, i.e., (xs+1, . . . , xs+n) = X\Y , and let |X| = |Y |+ |X\Y | = s+n denote the number
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of elements of the set X. Then we have (|X\Y | ≥ 0)

A(|X\Y |)(t, Y, X\Y ) =
∑

P :{Y,X\Y }=⋃
i Xi

(−1)|P |−1(|P | − 1)!
∏

Xi⊂P

S|Xi|(−t, Xi), (2)

where
∑

P is the sum over all possible decompositions of the set {Y, X\Y } into |P | nonempty
mutually disjoint subsets Xi ⊂ {Y, X\Y }, Xi ∩ Xj = ∅, and the set Y completely belongs to
one of the subsets Xi. In formula (2) the evolution operator S|X|(−t, X) of the Liouville equation
describes the dynamics of a system of a finite number n of particles, namely,

Sn(−t, x1, . . . , xn) fn(x1, . . . , xn) = fn

(
X1(−t, x1, . . . , xn), . . . , Xn(−t, x1, . . . , xn)

)
, (3)

where Xi(−t, x1, . . . , xn), i = 1, . . . , n, is a solution of the initial value problem for the Hamilton
equations of a system of n particles with initial data Xi(0, x1, . . . , xn) = xi, i = 1, . . . , n, (Sn(0) =
I is the identity operator). Operator (3) is defined e.g. in the space of integrable functions
fn ∈ L1 (Rνn × R

νn) ≡ L1
n [1], in particular, ‖Sn(−t)‖L1

n
= 1.

The simplest examples of evolution operators A(n)(t) (2) have the form

A(0)(t, Y ) = Ss(−t, Y ),

A(1)(t, Y, xs+1) = Ss+1(−t, Y, xs+1) − Ss(−t, Y )S1(−t, xs+1),

A(2)(t, Y, xs+1, xs+2) = Ss+2(−t, Y, xs+1, xs+2)

− Ss+1(−t, Y, xs+1)S1(−t, xs+2) − Ss+1(−t, Y, xs+2)S1(−t, xs+1)
− Ss(−t, Y )S2(−t, xs+1, xs+2) + 2!Ss(−t, Y )S1(−t, xs+1)S1(−t, xs+2).

Evolution operators (2) are solutions of the following recursion relations (|X\Y | ≥ 0)

S|X|(−t, Y, X\Y ) =
∑

P :{Y, X\Y }=⋃
i Xi

∏
Xi⊂P

A(|Xi|−1)(t, Xi), (4)

where
∑

P is the sum as above in formula (2).
We note that recursion relations (4) are typical cluster expansions [3] for the evolution op-

erator S|X|(−t, Y, X\Y ) defined by (3). Thus, the operators A(|X\Y |)(t, Y, X\Y ) (2) have the
meaning of the cumulants (semi-invariants) of the operator S|X|(−t, Y, X\Y ) describing the evo-
lution of a system of a finite number |X| of particles, i.e., they describe what noninteracting
clusters of particles may form a system of the corresponding number of particles in the process
of evolution, provided that a cluster of |Y | particles evolves as a single cluster.

The structure of the cluster expansions (4) can be represented in a more explicit and compact
form. To this end we consider the set of sequences Ψ =

(
Ψ0, Ψ1(x1), . . . ,Ψn(x1, . . . , xn), . . .

)
of

operators Ψn of type (3) (Ψ0 is an operator that multiplies a function by an arbitrary number).
In this set we introduce the tensor ∗-product

(Ψ1 ∗ Ψ2)|X|(X) =
∑
Y ⊂X

(Ψ1)|Y |(Y ) (Ψ2)|X\Y |(X\Y ),

where
∑

Y ⊂X is the sum over all subsets Y of the set X ≡ (x1, . . . , xn).
As a result, expression (2) can be rewritten in the form

A(t) = Ln∗
(
1 + S(−t)

)
, (5)

where A(t) = (0, (A(t))1(Y ), (A(t))2(Y, xs+1), . . .) and (A(t))1+n(Y, xs+1, . . . , xs+n) = A(n)(t, Y ,

X\Y ) ≡ A|Y |+n(t, Y, X\Y ). A mapping Ln∗ is defined: Ln∗(1 + Ψ) =
∞∑

n=1

(−1)n−1

n Ψ ∗ · · · ∗ Ψ︸ ︷︷ ︸
n

,

(Ψ = (0, Ψ1, . . . ,Ψn, . . .), and 1 = (1, 0, 0, . . .) is the unit sequence).
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We also remark that the cluster expansions (4) have the form

1 + S(−t) = Exp∗A(t),

where Exp∗ is defined as the ∗-exponential mapping: Exp∗Ψ = 1 +
∞∑

n=1

1
n! Ψ ∗ · · · ∗ Ψ︸ ︷︷ ︸

n

.

We note that the connections between different representations of the BBGKY hierarchy
solutions are considered in [1, 3]. For the first time several first terms of the expansion (1), (2)
for the one-particle distribution function were determined in [4, 5].

3 Cumulant representation of BBGKY hierarchy solutions
for symmetrical particle systems

We consider the problem of the convergence of the expansion (1), (2) in the space of sequences
of integrable functions and prove the solution existence theorem for the initial data from this
space.

Let L1
α =

⊕∞
n=0 αnL1

n be the Banach space of sequences f =(f0, f1(x1), . . . , fn(x1, . . . , xn), . . .)
of symmetric integrable functions fn(x1, . . . , xn) defined on the phase space R

νn ×R
νn with the

norm

‖f‖ =
∞∑

n=0

αn‖fn‖L1
n

=
∞∑

n=0

αn

∫
(Rν×Rν)n

dx1 · · · dxn |fn(x1, . . . , xn)|,

where α > 1 is a number; L1
α,0 ⊂ L1

α is the subspace of finite sequences of continuously differen-
tiable functions with compact supports.

Since on the sequences of integrable functions f ∈ L1
α the annihilation operator [1, 2]

(
af

)
n
(x1, . . . , xn) =

∫
Rν×Rν

dxn+1 fn+1(x1, . . . , xn, xn+1), (6)

is defined, in view of (5) and (6), expression (1), (2) takes the following form in the space L1
α

F (t) = eaA(t)F (0) = ea
Ln∗

(
1 + S(−t)

)
F (0). (7)

If F (0) ∈ L1
s+n, then the following estimate is true:

‖A(n)(t)Fs+n(0)‖L1
s+n

≤ n!en+2‖Fs+n(0)‖L1
s+n

. (8)

By virtue of inequality (8), the functions defined by (1) (or (7)) satisfy the following estimate
for α > e:

‖F (t)‖L1
α
≤ cα‖F (0)‖L1

α
, (9)

where cα = e2
(
1 − e

α

)−1 is a constant.
Note that the parameter α can be interpreted as a quantity inversely proportional to the

density of the system (the average number of particles in a unit volume).
Thus, according to estimate (9) the following existence theorem is true:

Theorem 1. If F (0) ∈ L1
α is a sequence of nonnegative functions, then for α > e, and t ∈ R

1,
there exists a unique solution to the initial value problem for the BBGKY hierarchy, namely the
sequence F (t) ∈ L1

α of nonnegative functions Fs(t) defined by

F|Y |(t, Y ) =
∞∑

n=0

1
n!

∫
d(X\Y )

∑
P :{Y,X\Y }⋃

i Xi

(−1)|P |−1 (|P | − 1)!

×
∏

Xi⊂P

S|Xi|(−t, Xi)F|X|(0, Y, X\Y ), (10)
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where we have the same notations as for (2). This solution is a strong solution for F (0) ∈ L1
α,0

and a weak one for arbitrary initial data.

If we consider initial data F (0) from the space L∞
ξ,β of sequences of continuous symmetric

functions bounded with respect to the configuration variables [1,2] the problem of the divergence
of configuration integrals in each term of series (1), (2) arises. We note that the cumulant
structure of expansion (1) allows one to prove the possibility of eliminating this divergence.

4 Cluster expansions of evolution operators
of non-symmetrical particle systems

We consider a one-dimensional system of identical particles interacting with their nearest neigh-
bours via the hard-core pair potential Φ. For the configurations (qi ∈ R

1 is the position of the
i particle center) of such a system the following inequalities must be satisfied: σ + qi ≤ qi+1,
where σ is the length of a particle, and the natural way to number the particles is to number by
means of the integers from the set Z\{0}. The Hamiltonian of the n = n1 + n2 particle system

Hn =
∑

i∈(−n2,...,−1,1,...,n1)

p2
i

2
+

∑
(i,i+1)∈

(
(−n2,−n2+1),...,(n1−1,n1)

) Φ(qi − qi+1)

is a function non-symmetrical [6,7] with respect to permutations of the arguments xi ≡ (qi, pi) ∈
R

1 × R
1.

If F (0) =
{
Fs(0, x−s2 , . . . , xs1)

}
s=s1+s2≥0

is a sequence of initial s-particle distribution func-
tions Fs(0, x−s2 , . . . , x−1, x1, . . . , xs1), F0 = 1, then a solution of the Cauchy problem for the
BBGKY hierarchy F (t) =

{
Fs(t, x−s2 , . . . , xs1)

}
s=s1+s2≥0

is represented as the expansion

Fs(t, x−s2 , . . . , xs1) =
∞∑

n=0

∑
n = n1 + n2

n1, n2 ≥ 0

∫
(R1×R1)n1+n2

dx−(n2+s2) · · · dx−(s2+1) (11)

× dxs1+1 · · · dxs1+n1

(
A(n2, n1)(t)Fs+n(0)

)
(x−(n2+s2), . . . , xs1+n1),

where the evolution operator A(n2,n1)(t) is defined in the following way. Let (x−s2 , . . . , xs1) ≡ Y ,
(x−(n2+s2), . . . , xs1+n1) ≡ X. The sets X and Y are partially ordered sets, because σ + qi ≤
qi+1. If the subset Y of the set X is treated as one element similar to (x−(n2+s2), . . . , x−(s2+1),
xs1+1, . . . , xs1+n1), then for such a partially ordered set we use the notation XY . Symbol |Y | =
s = s1 + s2 denotes the number of elements of the set Y and, thus, |XY | = n1 + n2 + 1. Then
we have

A(n2,n1)(t, XY ) =
∑

P :XY =
⋃

i Xi

(−1)|P |−1
∏

Xi⊂P

S|Xi|(−t, Xi), (12)

where n1 + n2 = n ≥ 0,
∑

P is the sum over all ordered decompositions of the partially ordered
set XY into |P | nonempty partially ordered subsets Xi ⊂ XY , which are mutually disjoint
Xi

⋂
Xj = ∅, and the set Y completely belongs to one of the subsets Xi. As above, in formula

(12) the evolution operator S|X|(−t, X) describes the dynamics of a system of a finite number
n = n1 + n2 of particles [2, 6].

The evolution operators (12) are solutions of the following recursion relations (|XY | − 1 ≥ 0)

S|X|(−t, X) =
∑

P :XY =
⋃

i Xi

∏
Xi⊂P

A(i2, i1)(t, Xi), (13)
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where i1 + i2 = i = |Xi| − 1 ≥ 0, and
∑

P is the sum given above in formula (12). The
recursion relations (13) are cluster expansions for the evolution operator of non-symmetrical
particle systems. We note that the structure of cluster expansion (13) is essentially different
from the structure of corresponding expansions (4) for the symmetrical systems.

As above, the structure of the cluster expansions (13) can be represented in a more explicit
and compact form. In the set of double sequences Ψ = {Ψn1+n2(x−n2 , . . . , xn1)}n1+n1=n≥0 of
operators Ψn1+n2 we introduce the following tensor �-product

(Ψ1 � Ψ2)|X|(X) =
∑
Y ⊂X

(Ψ1)|Y |(Y ) (Ψ2)|X\Y |(X\Y ),

where
∑

Y ⊂X is the sum over all partially ordered subsets Y of the partially ordered set X ≡
(x−n2 , . . . , xn1).

Then expression (12) for the cumulants of non-symmetrical systems can be rewritten in the
form

A(t) = 1 − (1 + S(−t))−1� , (14)

where A(t)=
(
0, (A(t))1(Y ), . . ., (A(t))1+n1+n2(XY ), . . .

)
and (A(t))1+n1+n2(x−(n2+s2), . . ., xs1+n1 ,

Y, xs1+1, . . . , xs1+n1) ≡ (A(t))1+n(XY ) = A(n2,n1)(t, XY ). A mapping 1 − (1 + ·)−1� is defined

the by formula: 1 − (1 + Ψ)−1� =
∞∑

n=1
(−1)n−1 Ψ � · · · � Ψ︸ ︷︷ ︸

n

(Ψ ≡ (0, Ψ1, . . . ,Ψ1+n1+n2 , . . .) and

1 = (1, 0, 0, . . .) is the unit sequence).
The cluster expansions (13) for the evolution operator of non-symmetrical particle systems

have the form

1 + S(−t) =
(
1 − A(t)

)−1� ,

where (1 − ·)−1� is defined as the �-resolvent: (1 − Ψ
)−1� = 1 +

∞∑
n=1

Ψ � · · · � Ψ︸ ︷︷ ︸
n

.

5 Cumulant representation of BBGKY hierarchy solutions
for non-symmetrical particle systems

We consider the problem of the convergence of expansion (11), (12) in the space of sequences

of integrable functions. Let L1
α =

∞∑
n=0

⊕
n = n1 + n2

n1, n2 ≥ 0

αn1+n2L1
n1+n2

be the Banach space of double

sequences f = {fn(x−n2 , . . . , xn1)}n=n1+n2≥0 integrable functions fn(x−n2 , . . . , xn1) defined on
the phase space R

n × (Rn\Wn) [2, 7] with the norm

‖f‖ =
∞∑

n=0

∑
n = n1 + n2

n1, n2 ≥ 0

αn1+n2

∫
(R1×R1)n1+n2

dx−n2 · · · dxn1 |fn1+n2(x−n2 , . . . , xn1)|,

where α > 1 is a number; L1
α,0 ⊂ L1

α is the subspace of finite sequences of continuously differen-
tiable functions with compact supports.

Since on the sequences of integrable functions f ∈ L1
α the operators

(
a(+)f

)
n
(x−n2 , . . . , xn1) =

∫
R1×R1

dxn1+1 fn+1(x−n2 , . . . , xn1 , xn1+1),

(
a(−)f

)
n
(x−n2 , . . . , xn1) =

∫
R1×R1

dx−(n2+1) fn+1(x−(n2+1), x−n2 , . . . , xn1)
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are defined, in view of (14) expansion (11) takes the following form in the space L1
α

F (t) =
(
1 − a(+)

)−1(1 − a(−)

)−1
A(t)F (0)

=
(
1 − a(+)

)−1(1 − a(−)

)−1(1 − (1 + S(−t)
)−1�

)
F (0).

If F (0) ∈ L1
s+n, then the estimates are true:

‖A(n2,n1)(t)Fs+n(0)‖L1
s+n

≤ 2 n1+n2 ‖Fs+n(0)‖L1
s+n

.

By virtue of this inequality, the functions F (t) defined by (11), (12) satisfy the following estimate
for α > 2,

‖F (t)‖L1
α
≤ c2

α‖F (0)‖L1
α
, (15)

where cα =
(
1 − 2

α

)−1 is a constant.
Thus, according to (15) the following existence theorem holds:

Theorem 2. If F (0) ∈ L1
α is a sequence of nonnegative functions, then for α > 2, and t ∈ R

1,
there exists a unique solution of the initial value problem for the BBGKY hierarchy, namely the
sequence F (t) ∈ L1

α of nonnegative functions Fs1+s2(t) defined by

F|Y |(t, Y ) =
∞∑

n=0

∑
n = n1 + n2

n1, n2 ≥ 0

∫
(R1×R1)n1+n2

d(X\Y )
∑

P :XY =
⋃

i Xi

(−1)|P |−1

×
∏

Xi⊂P

S|Xi|(−t, Xi)F|X|(0, X),

where we have the same notations as for relations (12). This solution is a strong solution for
F (0) ∈ L1

α,0 and a weak one for arbitrary initial data in the space L1
α.

Acknowledgements

This work was supported by INTAS (grant No. 001-15).

[1] Petrina D.Ya., Gerasimenko V.I. and Malyshev P.V., Mathematical foundations of classical statistical me-
chanics. Continuous systems, Second edition, Francis and Taylor, 2002.

[2] Cercignani C., Gerasimenko V.I. and Petrina D.Ya., Many-particle dynamics and kinetic equations, Kluwer
Acad. Publ., 1997.

[3] Gerasimenko V.I. and Ryabukha T.V., Cumulant representation of solutions of the BBGKY hierarchy of
equations, Ukr. Math. J., 2002, V.54, N 10, 1583–1601.

[4] Cohen E.G.D., The kinetic theory of dense gases, in Fundamental Problems in Stat. Mech., Editor E.G.D. Co-
hen, Amsterdam, North-Holland, 1968, V.2, 228–275.

[5] Dorfmann J.R. and Cohen E.G.D., Difficulties in the kinetic theory of the dense gases, J. Math. Phys., 1967,
V.8, N 2, 282–297.

[6] Gerasimenko V.I., Evolution of an infinite system of particles with nearest-neighbour interaction, Proceedings
of NAS of Ukraine, 1982, N 5, 10–13.

[7] Gerasimenko V.I., On the solution of the BBGKY hierarchy for a one-dimensional system of hard spheres,
Theor. Math. Phys., 1992, V.91, N 1, 120–128.


