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In the framework of the Dirac approach we have developed the relativistic version of the
WKB method for centrally symmetrical potential with the mixed Lorentz structure. We have
obtained relativistic wavefunctions of light quark and the new quantization rule containing
the spin-orbit interaction. These gives us the possibility of finding the energy levels and
decay width of hydrogen-like quark-systems.

1 Introduction

Dirac equations with potentials of a concrete type, for which it is possible to write the exact
solution, are encountered quite seldom. Most often either numerical or asymptotic methods are
used for searching the solutions. In many theoretical and applied problems the possibility of
obtaining the asymptotic solution allows to carry out the most complete analysis of a problem.
Therefore, hardly there is a necessity to explain in detail importance of creating and investigating
asymptotic methods for the solving the Dirac equation. The Wentzel–Kramers–Brillouin quasi-
classical approximation (or WKB method) is one of basic and most universal asymptotic methods
of solving problems of theoretical and mathematical physics (see, for example, [1–4]), for which
the exact solutions are either unknown or rather difficult to find. As it is known [1–4], in
the case of a Coulomb field this method has high accuracy even for small values of quantum
numbers. In contrast to the perturbation theory, the given approach is not connected with
a smallness of interaction and consequently has wider applicability area allowing to study quali-
tative legitimacies in behaviour and of properties of quantum mechanical systems. The new
application of quasi-classical approach can be low-energy sector of QCD (the energy spectrum
of hadrons, confinement study, decay widths of hadrons), where standard approaches based on
perturbative theories are inapplicable because of the fact that interaction between quarks in this
area is not small.

2 The WKB method for the Dirac equation
in a centrally symmetrical field

We obtain the formulae of the quasi-classical approximation for solutions of the Dirac equation
with potential of centrally symmetry having mixed Lorenz structure. For this purpose we search
wavefunctions of the stationary states (in standard representation) in the form of

Φ = r−1

(
F (r)ΩjlM (n)
iG(r)Ωjl′M (n)

)
, (1)

where Ω is the spherical spinor, j and M are the total angular moment and projection of j
(j = l ± 1/2) respectively, l is the orbital moment (l + l′ = 2j), n = r/r.
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After the separation of the angular variables the Dirac equation with centrally symmetrical
potential containing both vector V (r) and scalar S(r) parts takes the form (� = c = 1)

dF

dr
+

k

r
F − 1

�
[(E − V (r)) + (m + S(r))]G = 0,

dG

dr
− k

r
G +

1
�

[(E − V (r)) − (m + S(r))] F = 0, (2)

where F and G are the radial functions, k = ∓ (j + 1/2) for states with j = l ± 1/2, E is the
energy of level.

For finding quasi-classical solutions of the system (2) it is convenient to write equations (2)
in the matrix form [5]:

Ψ′ =
1
�
DΨ, Ψ =

{
F
G

}
,

D =
( −�k/r E − V (r) + m + S(r)

−E + V (r) + m + S(r) �k/r

)
. (3)

Here a Planck constant � remains in the explicit form, the prime denotes the derivative with
respect to r. We will regard the solution of the matrix equation (3) as the formal expansion in
powers of �:

Ψ = ϕ exp
(∫ r

ydr

)
, y(r) =

1
�
y−1(r) + y0(r) + �y1(r) + · · · ,

ϕ(r) =
∞∑

n=0

�
nϕ(n)(r), (4)

where the upper (lower) component ϕ
(n)
F ( ϕ

(n)
G ) of the vector ϕ(n) corresponds to the radial

wavefunction F (G). Having substituted (4) into (3) and equated to zero the coefficients of each
power of �, we arrive at the recurrent system

(D − y−1) ϕ(0) = 0, (D − y−1) ϕ(n+1) = ϕ(n)′ +
n∑

k=0

yn−kϕ
(k), n = 0, 1, . . . . (5)

Using the first two equation of system (5) by means of the left and right vectors technique we
find the terms y−1, y0 and ϕ(0). So we have obtained (up to a normalization constant)

Ψ =
{

F
G

}
=
[
2q

(
q ± k

r

)]−1/2

× exp
{
±
∫ r

qdr +
1
2

∫ r (m + S) V ′ + (E − V ) S′

q (q ± kr−1)
dr

}(
m + S + E − V

kr−1 ± q

)
, (6)

q =
√

(m + S)2 − (E − V )2 + (k/r)2, (7)

(here and hereinafter � = 1).
The effective energy and effective potential

Eef =
E2 − m2

2m
, Uef (r, E) =

E

m
V + S +

S2 − V 2

2m
+

k2

2mr2
(8)

correspond to the Dirac system (2). So U (r, E) looks like a potential with a barrier (Fig. 1).
We consider the most general case, when the effective potential is barrier type (Fig. 1). Then
wavefunction has the different form in the three regions: 1) potential well r0 < r < r− (q2 < 0);
2) the below-barrier region r− < r < r+ (q2 > 0); 3) the classically allowed region with
continuum spectrum r > r+ (q2 < 0), where r0, r− and r+ are turning points.
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Figure 1. The type of the effective potential Uef(r, E).

3 The wavefunction of the Dirac particle
in classically allowed and forbidden regions

The wavefunction of state has the different form in the various regions.
I. The region r0 < r < r− is classically allowed; there the wavefunctions (6) oscillate

F = C±
1

[
E − V + m + S

p

]1/2

cos Θ1, G = C±
1 sgn k

[
E − V − m − S

p

]1/2

cos Θ2, (9)

where

p(r) =
√

(E − V )2 − (m + S)2 − (k/r)2 (10)

is the quasi-classical momentum for the radial motion of a particle, C±
1 is a normalization

constant,

Θ1 =
∫ r

r−

(
p +

kw

pr

)
dr +

π

4
, Θ2 =

∫ r

r−

(
p +

kw̃

pr

)
dr +

π

4
, (11)

w =
1
2

(
V ′ − S′

m + S + E − V
− 1

r

)
, w̃ =

1
2

(
V ′ + S′

m + S − E + V
+

1
r

)
.

Signs ± correspond to values k > 0 and k < 0 respectively. If the level width Γ is small (it will
be shown later) the wavefunction of quasi-stationary state can be normalized on a single particle
localized in the region I, neglecting its penetrability into the classically forbidden regions r < r0

and r > r− [1]∫ r−

r0

(
F 2 + G2

)
dr = 1. (12)

Here cos2 Θi (r) can be replaced with average value 1/2:∣∣C±
1

∣∣ =
[∫ r−

r0

E − V (r)
p (r)

dr

]−1/2

=
(

2
T

)1/2

, (13)

where T is the oscillation period of a relativistic particle inside a potential well.
II. The below-barrier region r− < r < r+ is classically forbidden. Here p = iq, and quanti-

ties q, y−1 and y0 are real. As it is known [1], the wavefunction should exponentially decrease
inside this region. So the solutions of the Dirac system (2) in the below-barrier region for k < 0
are

Ψ =
C−

2√
qQ

exp
[
−
∫ r

r+

(
q − (m + S) V ′ + (E − V ) S′

2qQ

)
dr

](
m + S + E − V

−Q

)
, (14)

where Q = q + |k|/r.
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III. The result for region of continuum (r > r+) is the most interesting. Here the wavefunction
corresponds to the divergent wave (taking off particle): (for k < 0)

Ψ =
C−

3√
pP

exp
[∫ r

r+

(
ip − (m + S)V ′ + (E − V )S′

2pP

)
dr

](
m + S + E − V

iP

)
, (15)

where P = p + i |k| /r.
For bypass of these points and matching the solutions we employ the usual method [2].

Closely to the r− and r+ the system (2) is reduced to the Schrödinger equation with the effective
potential linearly depending on r − r±, the solution of which is expressed by the Airy function;
one can use a the more elegant Zwaan method [1, 3]. So the relation between the constants in
various regions is of the form

C±
2 = −iC±

3 = ∓C±
1

2

[
E − V (r−) + m + S (r−)

|k| r−1
−

]± 1
2

× exp
[
−
∫ r+

r−

(
q ± (m + S) V ′ + (E − V ) S′

2qQ

)
dr

]
. (16)

Let us find the equation determining the real part of the level energy E and width Γ of quasi-
stationary levels E = Er − iΓ/2. Neglecting the barrier penetrability from (9) we obtain the
quantization condition:∫ r−

r0

(
p +

kw

pr

)
dr =

(
nr +

1
2

)
π, nr = 0, 1, 2, . . . , (17)

where nr is the radial quantum number.
Let us proceed to calculation of the level width Γ. Having used the explicit expressions (15)

for functions F and G, relation between normalization constants (16) and expression for C±
1 (13),

we get the tunneling probability:

Γ = −2Im [G∗F ]r→∞ =
1
T

exp
[
−2

∫ r+

r−

(
q − kw

qr

)
dr

]
. (18)

However, the formulae (9)–(18) essentially differ from the formulae of nonrelativistic quasi-
classics (in particular, by the relativistic expression for the quasimomentum p, taking into ac-
count spin-orbit interaction and additional pre-exponent multiplier) and are more complicated.
Their application to concrete problems does not encounter difficulties, since all quantities in
functions F and G are expressed in quadratures.

In (2+1) dimensions the Dirac system differs from (2) by replacements G → −G and k →
−(l + 1/2), where l + 1/2 is the eigenvalue of the total angular moment Jz [6]. So all the
expressions for wavefunctions, quantization condition and decay width in (2+1)-dimensional
case can be obtained from formulae (9)–(18) by these replacements.

4 Approbation of the results obtained

4.1. For testing our version of the WKB method, let us obtain the Sommerfeld–Dirac formula
known in atomic physics. We choose V (r) = −αZ

r and S(r) = 0 (α ≈ 1/137 is the fine structure
constant). Having calculated the integral from r0 to r− in the quantization condition (17), we
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arrive at the Sommerfeld–Dirac formula

E = m

1 +

 αZ

n +
√

k2 − (αZ)2

2−1/2

,

n = nr +
(1 + sgn k)

2
=
{

0, 1, 2 . . . , for k < 0,
1, 2 . . . , for k > 0.

Here nr = 0, 1, 2, . . . is the radial quantum number from the quantization condition (17).
4.2. There is one more interesting case, in which it is possible to get an exact solution of the

Dirac equation with potential of the type V (r) = −α
r , S(r) = −α′

r . In the same way as that by
means of which the Coulomb potential V (r) is derived from the exchange of massless photon
between the nucleus and the leptons orbiting around it, the scalar potential S(r) is created by
the exchange of massless scalar mesons. The quantization condition (17) gives result coinciding
with the expression obtained in [7]:

E = m

 −αα′

α2 + (n + γ)2
∓
[(

αα′

α2 + (n + γ)2

)2

− α′2 − (n + γ)2

α2 + (n + γ)2

]1/2
 ,

γ =
√

k2 − α2 + α′2.

4.3. We consider the potential V (r) = S (r) = ar2/4, a is the force of an oscillator. Integra-
tion in quantization condition (17) from r0 to r− gives the following result

(E − m)
2

√
E + m

2a
− |k|

2
− 1

4
sgn k = nr +

1
2
,

input K = |k| + (1 + sgn k)/2, get

(E − m)
√

2 (E + m) = (4nr + 2K + 1)
√

a.

The latter equation for energy is cubic, its real solution is

Enr,K =
(
2m + 8 · 22/3m2A−1/3 + 21/3A1/3

)
/6,

where A = −B +
√

B2 − 1024m6, B = 32m3 − 27a (1 + 2K + 4nr)
2. This expression completely

coincides with result obtained in [8].
4.4. Let us consider a motion of a massless fermion in the scalar field S(r) = −α′

r + σr,
σ > 0; V (r) = 0. Integration in quantization condition (17) from r0 to r− gives following result

E2 + 2σ(α′ − γ)
4σ

− k

σ(r0 + r−)π

[
2r0

(
Π(ν2

+, χ)
r2
0 − P 2

+

+
Π(ν2−, χ)
r2
0 − P 2−

)
−
(

1
r0 + P+

+
1

r0 + P−

)
F (χ)

]
=
(

nr +
1
2

)
, (19)

where

r0,− =
1

21/2σ

√
E2 + 2α′σ ∓

√
(E2 + 2α′σ)2 − (2σγ)2, γ =

√
k2 + α′2,

P± =
1
2σ

(−E ±
√

E2 + 4α′σ), χ =

√
E2 + 2σ(α′ − γ)
E2 + 2σ(α′ + γ)

, ν2
± = χ

P± + r0

P± − r0
.
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Calculating the integrals approximately in (17), one obtains the following spectrum instead
of (19)

E2
nr,k

4σ
= nr +

1
2

+
γ − α′

2
+

k

4γ
+

σk

2πE2
nr,k

(
0.38 + ln

E2
nr,k

σγ

)
+ O

( σγ

E2
nr,k

)2
 . (20)

The form (20) is exact for small (γσ/E2
nr,k)

2, and the accuracy can be tested by comparison
with the exact formula (19); two sets of lowest levels with k = ±1 coincide within 2 % and for
higher levels the precision is smaller than 1 %. At α′ = 0 expression (20) is reduced to Simonov’s
result [9].

In case of E2
nr,k � σγ in formula (20) expression

(
0.38 + lnE2

nr,k/σγ
)/

π tends to 1 and one
can obtain following expression for energies

εnr,k =
Enr,k√

σ
= ±

√
N − α′ + [(N − α′)2 + 2k]1/2, N = 2nr + 1 + γ +

k

2γ
. (21)
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