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Operators of total differentiation D, Cartan forms w and infinitesimal symmetries P con-
stitute the structure of infinite jet space J, . We describe these notions compactly for the
space Jp,1 though reserve the possibility to pass with the help of multi-indices to general
case Jp m. Our aim is to show the universality of this structure. Every time when we diffe-
rentiate a function f with respect to the vector field X on a manifold M we can determine
amap ¢ : M — Jy1 and connect the triple (X, s, F') with the triple (D,¢,U) in J; 1, where
F is the set of derivatives f*) = X¥f k =0,1,2,...; s is canonical parameter of X, U is
the set of fiber coordinates u*) = D¥u, k =0,1,2,..., and ¢ is canonical parameter of D.
Then all the invariants and symmetries of D as well as all the covariant tensors including
Cartan forms can be transformed from .J; ; onto the manifold M. The structure is universal
as final object in the category of triples (X, s, F').

Let f:V, — V., be a smooth mapping. The infinite jet of the map f is determined by the
coordinates t*, u® of the points ¢t € V;, and u = f(t) € V,,,, and by the values of partial derivatives
at ¢:

8fa 82fa
Ui 8u2()’ Yij 8u28u1()
,7=1,2,..., n=dmV,, a=12,..., m=dmV,.

The set of the jets of f is called jet space J,, , where the quantities

ol ug, o oul, . (1)

are jet coordinates.
In the space Ji,1 we have the coordinates

t, wu, o, ', ... (2)

or briefly (t,U) where U is the column of elements u, ', u”,....
In Ji1 one has the natural basis (a 9_. dt,dU ) associated with the coordinates (2). Here

f 30 90>
% is the row of elements %, %, ... and dU is the column of elements du, du’,du”, .. ..
Let us introduce the infinite-dimensional unit matrix £ and the shift matrix C as follows:
1 0 0 - 0 1 0
0 1 0 - 0 0 1
E= 0 0 1 - ’ ¢= 0 0 0

and define in Jy 1 the total differentiation operator by formula:

D= %—F%U’, where U =CU. (3)
Proposition 1. The operator D is a linear vector field in the jet space Ji1 and its flow is
determined by exponential law (see [5]),

U'=CcU = U =e"U. (4)

The curves (t,U;) are the trajectories of D.
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Proposition 2. If the operator % in the frame (%, %) is replaced by D then the differentials
dU in the coframe (dt,dU) have to be replaced by Cartan forms

w=dU — U'dt. (5)
The new basis in the matrix form

D D Y_ (9 0 1 0 at \ 1 0 dt

(D ap)=Ca v) (v g ) w ) \-U E) \dU )"

is called adapted basisin Ji 1. The term “adapted basis” proceeds from the theory of connections
(see [4, p. 23]).

Proposition 3. The derivation formulae valid for the adapted basis (vertical part):

2\ 0 ,
(%> = —%C, W' = Cw. (6)

The stroke means Lie derivative with respect to D. The frame % and the coframe w are
transported by the flow of D according to the law (4):

d Y\ G ) 0 o
(0) =a0¢ = <%)f@e’

W =Cw = w = e%tw.
Proposition 4. The quantities
I=eCU (7)

are the invariants of D because I' = e~ “* (U’ — CU) = 0. Replacing U by I in the fibers of J11
we have the invariant basis:

o 0
(E’ E,dt,dl) .

The exponential et is integrating matriz for Cartan forms w and the operators % are
infinitesimal symmetries of D (infinitesimals after [1]) in the following sense:

0 _ 90 o
ol _oUu‘ -

Infinitesimal symmetries of D are called Lie vector fields in Jy ;.

t

dl = e Ctw,

(8)

Proposition 5. A vector field P written in three frames of Ji1, natural, adapted and invariant
as follows

VN ISR I YO o
has for components the entities

¢ = Pt, A= PU, uw=w(P), v =PI, (10)
with relations

v=e py, pu=x-U't. (11)

The field P is a Lie vector field if and only if one of equivalent conditions is satisfied:
vV =0, W =Cp, N=C\+U'¢. (12)
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It is obvious from the Lie derivatives:

a ., , o, , 0
oA 0t o ov
AV Tt T — () _ _ Ct
Lyw=\N-CXx-U'¢)dt + <_3U U 8U> w=(u —Cp)dt+ oY = ¢ v'dt + Y

The most simple condition v/ = 0 says that the components v in invariant frame are invariants
of D.

The condition ¢/ = Cp means that each entry of column g is the derivative of preceding
entry. Thus all entries of column g in adapted frame are generated by the first entry pg = f
(generating function, see [1, p. 454]) by means of differentiation:

we=f® =DFf  k=0,1,2,....
There is an obvious analogy between two equations I = e~ “*U and v = e~ “*p.
The most complicated condition ' = CA\+U’¢’ is principal for the calculation of symmetries

in natural basis (see [1, p. 244], [2, p. 110], [3, p. 55]).

Remark 1. In Jy; the invariants I = e~ CtU are described as follows:

I —iuw“)ﬂ k=0,1,2
k — /! ; — Uy Ly Ly

The operators % are basic Lie vector fields with generating functions 1 t, %, ... respectively,
that is

o 0

6[0 N 8u’

0 0 0

Remark 2. In J, ,, instead of D we have a system of n operators D;, i = 1,2,...,n, and
instead of 1-dimensional trajectories we have n-dimensional orbits of the additive group R™. For
example, in the space Ja; there are the 2-dimensional time ¢ = (¢1,%2) and two operators

0 0 0 0
Di=—+4u— +ui=— t+uo—+-

oty ou ouq Oug
D—i—i-u 8—i—u 0 +u i—l—
2= 5, 250 125, 2 5y

Herewith 2-dimensional orbits of R? are determined by the series

1
ug =u+uity +usty + 5 [u11(t1)? + 2uratits + uga(ta)®] + - -

and its partial derivatives of all orders with respect to t; and to.

Remark 3. In Jy; the Lie field P with the generating function f can be represented in adapted
and natural basis as follows:

P=gDi 4D+ o+ fim- +f2‘9
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0 0 9 9
_ ¢l 7 2 1 2y 9 1 9
=¢ ot +¢ BT + (f + wg' +uzg?) 8u+(f1+u11§ +u12§)—au1

0
+ (f2 + w128 4 u228?) FRE

where f; = D;f, i = 1,2. The components A\, = f, + ui;&%, k = 0,1,2,... are consistent with
the relation A = p + U’¢.

Theorem 1. Any smooth vector field X without singularities on a manifold M can be connected
with the total differentiation operator D in the jet space Ji, i.e. there exists a smooth map
@ : M — Jyi1 such that the vector field X is @-connected with the operator D.

Proof. Let s be the canonical parameter of the vector field X, herewith Xs = 1. Take a smooth
function f and calculate its derivatives with respect to X, f®) = X*f k=1,2,.... Let F be
the infinite column of elements f, f/, f”,... and let us define the mapping ¢ by the relations

top=s, Uogp=F. (13)
At some step n we get the conditions
O =df Ndf' Ndf" A---ANdfF"D £0  and O AdF™ =o. (14)

There are two possible cases: a) n = dim M, or b) n < dim M.
Case a) n = dim M. Let the functions f, f/, f”,..., £~ be the coordinates on M and let
us represent the field X as follows:

0

0 0
_+f”_+...+f(")m'

of of’

The Jacobian matrix of ¢ relate the components of X to the components of D (the subscripts
mean the partial derivatives):

X=f

S1 e Sn, 3/ 1
1 - 0 I I u
o e _ . o
0o .- 1 e ) ) 2
OO Fon) W)

The rank of the Jacobian matrix is equal to n and ¢ is an immersion of M into J; ;. The triple
(X, s, F) on the manifold M is p-connected with the triple (D, ¢,U) in the jet space J 1.

Case b) n < N = dim M. It follows from O A df (") = 0 that df(™ is a linear combination of
af,df’,daf",...,dfn=0,

df => " a;df " and  Lx© =x®.
1=1

The functions f, f/, f”,..., f™ 1 determine a submersion m : M — W. The vector field X
transports the fibers of 7 into the fibers of the same bundle and because of this the field X can
be projected on the n-dimensional manifold W. In the coordinates v(¥),

vWDor=f0  i=0,1,2,...,n—1,
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the projection of X is a vector field

0 0 0 0
TrX = ’U/% +’U”% + - +U(n UW +f(n)m

which can be connected by a map ¢ : W — Jy 1 with the operator D. Then the vector field X
is ¢p-connected with D, where ¢ = ¢ o 7.

General case. How to make the correspondence between a system of n vector fields Y; on
a manifold M with the operators of total differentiation D; in the jet space J,, 7 Let u® be the
coordinates on M, u’ the canonical parameters of Y;, Yiu? = 5{ , and y§* the natural components
of the fields Y;. The operators

- oul L out Yi ou™

X

determine a n-dimensional distribution in the “space-time” R"™ x M with the coordinates (u’, u®),
i=1,2,...,n;a=n+1,...,n+m; m=dim M. This is a particular case of connection in the
fiber space, see [4], where the operators

0 | ped (15)

N T e

form in the coordinates (u’,u®) an adapted frame of the horizontal distribution Ay, with the
components

¢ =T, ul).

In our case we have I'¢® = y%(u/). Let us immerse the operators X; in the space J,, m with the
help of the map ¢ : M — J,, ;, supposing

top=ul, u*o¢p=u", ug op =17,
The operators X; and the vector fields Y; are (p-connected with the operators D;. |

As corollaries we have the next Propositions.

Proposition 6. If the vector field X is p-connected with the operator D then for any function I
in Ji1 the derivatives X (I o ¢) and DI are p-connected, i.e. X(I o) = (DI)o . From this
it follows that DI = 0 = X (I o ) = 0 and all the invariants of D can be transported on the
manifold M in the invariants of the vector field X. In particular the invariants I = e~ “*U are
transported from Jy1 on M in the invariants I o ¢ = e C5F.

Proposition 7. If the vector field X is p-connected with the operator D then all the covariant
tensors can be transported from Ji1 on the manifold M. For example, the Cartan forms w =
dU — U'dt can be transported in the forms wo Ty = dF — F'dt, where F' = XF. The sequence
of Lie derivatives with respect to D (Cartan forms)

wo =du—u'dt, wy=du —d"dt, wj=du" —u"dt,
induces the sequence of Lie derivatives with respect to X :

woo T =df — f'ds, whoTe=df — f"ds, wyoTyp=df"— f"ds,
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Proposition 8. In the general case (16) the Cartan forms in Jy
C = du® —udt’, W =dud — u%dtj,
induce on the manifold R™ x M the sequence of 1-forms
0% = w*o Ty = du® — T%du’, 0¥ =wf 0Ty =dl'$ — X(ifo-‘)duj,

The horizontal distribution Ay, is the annulator of the forms 8%, i.e. #*(X;) = 0. The forms 65
imply the appearance of two important objects:

K = Xl object of curvature,

(e
Ik
i3 = —0gl'{", object of connection.

Namely, because dI'¢ = X;T¢du/ + 957'%0° and X;T¢ = X (il“jo.‘) - X [Z-Fjo.j we have
0f = —K{du/ — 55607,

For the linear connection the quantities I'{" are linear functions on the fibers: I'{* = —Ff‘ﬁuﬂ , and
we have Kf; = —K{;ﬂuﬁ, where Kf; = I Gt F[ hl 5 (see [4, p. 26]).

Extending the linear connection onto the tangent undle TM — M we get the affine
connection on the manifold M in the classical sense.

Proposition 9. The vertical distribution A, is integrable because A, = Ker T'w and the vector
fields (15) are infinitesimals of A,. For any coframe 6° of A, there erists an integrating mat-
iz B; such that B;-Hj = du'. Then BLO¥(Xj) = (5;- is unit matriz and B]i- is inverse to the
matriz 0°(X;).

Let us mention that from (8) we have the same situation e~“*w(Z) = E. This generalizes
the known property of integrating factor for n = 1 (see [1, p. 60]).

Proposition 10. The vector field P represented in natural and adapted frames as follows (see

[5, p. 286])

Pog X X, =X TEE
s an inﬁmtesimal symmetry of horizontal distribution Ay if and only if either

XiA* — PTY —T§X:¢/ =0 (17)
or

Xip® + Dip’ 4+ 2K3¢7 = 0. (18)

For the case

e = Fl/@u ue = uguﬁ, A = )\guﬁ, pg = Az + I 5’
the conditions (17) and (18) are equivalent to

G’Ag—Aalﬂ +F°‘/\7+8F §]—|—F XEJ—O (19)

O — ,uﬂﬂ +Fw,uﬂ ijﬁgj = 0. (20)
On the tangent bundle TM — M we have the correspondence

o¢! . o

(W) ~ (W dul), (€N~ (€d0), MG~ om ot~ o Tk

and the conditions (19) and (20) define P as an affine collineation (infinitesimal movement in
the space of affine connection or Killing’s vector field in Riemannian geometry), see [6, p. 37,
formulae (2.30) and (2.31)].



230

M. Rahula

Remark 4. For ODE ¢ + p(x)y + q(x) = 0 we have w = (py + ¢)dx + dy and the condition (18)

gives . = e~ J'pdz The form

f:d<g>+3dx
[ nw) p

is exact and determines the first integral (see [1, p. 160])

g—I-/gcl:c.
I 1
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