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Based on the structure of Casimir elements associated with general Hopf algebras there
Liouville–Arnold integrable flows, related with naturally induced Poisson structures on ar-
bitrary co-algebra and their deformations, are constructed. Some interesting special cases
including the oscillatory Heisenberg–Weil algebra, related co-algebra structures and adjoint
with them integrable Hamiltonian systems are considered.

1 Hopf algebras and co-algebras: main definitions

Consider a Hopf algebra A over C endowed with two special homomorphisms called coproduct
∆ : A → A ⊗ A and counit ε : A → C, as well an antihomomorphism (antipode) ν : A → A,
such that for any a ∈ A

(id ⊗ ∆)∆(a) = (∆ ⊗ id)∆(a), (id ⊗ ε)∆(a) = (ε ⊗ id)∆(a) = a,

m((id ⊗ ν)∆(a)) = m((ν ⊗ id)∆(a)) = ε(a)I, (1)

where m : A⊗A → A is the usual multiplication mapping, that is for any a, b ∈ A m(a⊗b) = ab.
The conditions (1) were introduced by Hopf [1] in a cohomological context. Since most of the
Hopf algebras properties depend on the coproduct operation ∆ : A → A⊗A and related with
it Casimir elements, below we shall dwell mainly on the objects called co-algebras endowed with
this coproduct.

The most interesting examples of co-algebras are provided by the universal enveloping al-
gebras U(G) of Lie algebras G. If, for instance, a Lie algebra G possesses generators Xi ∈ G,
i = 1, n, n = dimG, the corresponding enveloping algebra U(G) can be naturally endowed with
a Hopf algebra structure by defining

∆(Xi) = I ⊗ Xi + Xi ⊗ I, ∆(I) = I ⊗ I, ε(Xi) = −Xi, ν(I) = −I. (2)
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These mappings acting only on the generators of G are straightforwardly extended to any mono-
mial in U(G) by means of the homomorphism condition ∆(XY ) = ∆(X)∆(Y ) for any X, Y ∈
G ⊂ U(G). In general an element Y ∈ U(G) of a Hopf algebra such that ∆(Y ) = I ⊗Y +Y ⊗ I is
called primitive, and the known Friedrichs theorem [2] ensures that in U(G) the only primitive
elements are exactly generators Xi ∈ G, i = 1, n.

On the other hand, the homomorphism condition for the coproduct ∆ : A → A⊗A implies
the compatibility of the coproduct with the Lie algebra commutator structure:

[∆(Xi), ∆(Xj)]A⊗A = ∆([Xi, Xj ]A) (3)

for any Xi, Xj ∈ G, i, j = 1, n. Since the Drinfeld report [3] the co-algebras defined above are also
often called “quantum” groups due to their importance [4] in studying many two-dimensional
quantum models of modern field theory and statistical physics.

It was also observed (see for instance [4]) that the standard co-algebra structure (2) of the
universal enveloping algebra U(G) can be nontrivially extended by means of some of its in-
finitesimal deformations saving the co-associativity (3) of the deformed coproduct ∆ : Uz(G) →
Uz(G)⊗Uz(G) with Uz(G) being the corresponding universal enveloping algebra deformation by
means of a parameter z ∈ C, such that lim

z→0
Uz(G) = U(G) is subject to some natural topology

on Uz(G).

2 Casimir elements and their special properties

Take any Casimir element C ∈ Uz(G) that is an element satisfying the condition [C, Uz(G)] = 0,
and consider the action on it of the coproduct mapping ∆:

∆(C) = C({∆(X)}), (4)

where we put, by definition, C := C({X}) with a set {X} ⊂ G. It is a trivial consequence that
for A := Uz(G)

[∆(C), ∆(Xi)]A⊗A = ∆([C, Xi]A) = 0 (5)

for any Xi ∈ G, i = 1, n.

Define now recurrently the following N -th coproduct ∆(N) : A →
(N+1)
⊗ A for any N ∈ Z+,

where ∆(2) := ∆ and ∆(1) := id and

∆(N) :=
(
(id⊗)N−2 ⊗ ∆

) · ∆(N−1), (6)

or as

∆(N) :=
(
∆ ⊗ (id⊗)N−2 ⊗ id ⊗ id

) · ∆(N−1). (7)

One can straightforwardly verify that

∆(N) :=
(
∆(m) ⊗ ∆(N−m)

) · ∆ (8)

for any m = 0, N, and the mapping ∆(N) : A →
(N+1)
⊗ A is an algebras homomorphism, that is[

∆(N)(X), ∆(N)(Y )
]
(N+1)
⊗ A

= ∆(N)([X, Y ]A) (9)

for any X, Y ∈ A. In a particular case if A = U(G), the following exact expression

∆(N)(X) = X(⊗ id)N−1 ⊗ id + id ⊗ X(⊗ id)N−1 ⊗ id + · · · + (⊗ id)N−1 ⊗ id ⊗ X (10)

holds for any X ∈ G.
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3 Poisson co-algebras and their realizations

As is well known [5, 6], a Poisson algebra P is a vector space endowed with a commutative
multiplication and a Lie bracket {·, ·} including a derivation on P in the form

{a, bc} = b{a, c} + {a, b}c (11)

for any a, b and c ∈ P. If P and Q are Poisson algebras one can naturally define the following
Poisson structure on P ⊗Q:

{a ⊗ b, c ⊗ d}P⊗Q = {a, c}P ⊗ (bd) + (ac) ⊗ {b, d}Q (12)

for any a, c ∈ P and b, d ∈ Q. We shall also say that (P; ∆) is a Poisson co-algebra if P is
a Poisson algebra and ∆ : P → P ⊗ P is a Poisson algebras homomorphism, that is

{∆(a), ∆(b)}P⊗P = ∆({a, b}P) (13)

for any a, b ∈ P.
It is useful to note here that any Lie algebra G generates naturally a Poisson co-algebra (P; ∆)

by defining a Poisson bracket on P by means of the following expression: for any a, b ∈ P

{a, b}P := 〈grad, ϑ grad b〉. (14)

Here P � C∞(Rn; R) is a space of smooth mappings linked with base variables of the Lie
algebra G, n = dimG, and the implectic [6] matrix ϑ : T ∗(P) → T (P) is given as

ϑ(x) =

{
n∑

k=1

ck
ijxk : i, j = 1, n

}
, (15)

where ck
ij , i, j, k = 1, n, are the corresponding structure constants of the Lie algebra G and x ∈ R

n

are the corresponding linked coordinates. It is easy to check that the coproduct (1.2) is a Poisson
algebras homomorphism between P and P⊗P. If one can find a “quantum” deformation Uz(G),
then the corresponding Poisson co-algebra Pz can be constructed with the naturally deformed
implectic matrix ϑz : T ∗(Pz) → T (Pz). For instance, if G = so(2, 1), there exists a deformation
Uz(so(2, 1)) defined by the following deformed commutator relations with a parameter z ∈ C:

[X̃2, X̃1] = X̃3, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] =
1
z

sinh(zX̃2), (16)

where at z = 0 elements X̃i

∣∣
z=0

= Xi ∈ so(2, 1), i = 1, 3, compile a base of generators of the
Lie algebra so(2, 1). Then, based on expressions (16) one can easily construct the corresponding
Poisson co-algebra Pz, endowed with the implectic matrix

ϑz(x̃) =


 0 −x̃3 −1

z sinh(zx̃2)
x̃3 0 −x̃1

1
z sinh(zx̃2) x̃1 0


 (17)

for any point x̃ ∈ R
3, linked naturally with the deformed generators X̃i, i = 1, 3, taken above.

Since the corresponding coproduct on Uz(so(2, 1)) acts on this deformed base of generators as

∆(X̃2) = I ⊗ X̃2 + X̃2 ⊗ I, ∆(X̃1) = exp
(
−z

2
X̃2

)
⊗ X̃1 + X̃1 ⊗ exp

(z

2
X̃2

)
,

∆(X̃2) = exp
(
−z

2
X̃2

)
⊗ X̃3 + X̃3 ⊗ exp

(z

2
X̃2

)
, (18)
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satisfying the main homomorphism property for the whole deformed universal enveloping algebra
Uz(so(2, 1)).

Consider now some realization of the deformed generators X̃i ∈ Uz(G), i = 1, n, that is
a homomorphism mapping Dz : Uz(G) → P(M), such that

Dz(X̃i) = ẽi, i = 1, n, (19)

are some elements of a Poisson manifold P(M) realized as a space of functions on a finite-di-
mensional manifold M, satisfying the deformed commutator relationships {ẽi, ẽj}P(M) = ϑz,ij(ẽ),
where, by definition, expressions [X̃i, X̃j ] = ϑz,ij(X̃), i, j = 1, n, generate a Poisson co-algebra
structure on the function space Pz := Pz(G) linked with a given Lie algebra G. Making use of
the homomorphism property (13) for the coproduct mapping ∆ : Pz(G) → Pz(G) ⊗ Pz(G), one
finds that for all i, j = 1, n

{∆(x̃i), ∆(x̃j)}Pz(G)⊗Pz(G) = ∆({x̃i, x̃j}Pz(G) = ϑz,ij(∆(x̃)) (20)

and for the corresponding coproduct ∆ : P(M) → P(M) ⊗ P(M) one gets similarly

{∆(ẽi), ∆(ẽj)}P(M)⊗P(M) = ∆({ẽi, ẽj}P(M) = ϑz,ij(∆(ẽ)), (21)

where {·, ·}P(M) is some, eventually, canonical Poisson structure on a finite-dimensional mani-
fold M.

Let q ∈ M be a point of M and consider its coordinates as elements of P(M). Then one can
define the following elements

qj := (I⊗)j−1q(⊗I)N−j ∈
(N)
⊗ P(M), (22)

where j = 1, N by means of which one can construct the corresponding N -tuple realization of
the Poisson co-algebra structure (21) as follows:{

ẽ
(N)
i , ẽ

(N)
j

}
(N)
⊗ P(M)

= ϑz,ij

(
ẽ(N)

)
, (23)

with i, j = 1, n and
(N)
⊗ Dz

(
∆(N−1)(ẽi)

)
:= ẽ

(N)
i (q1, q2, . . . , qN ). (24)

For instance, for the Uz(so(2, 1)) case (16), one can take [7] the realization Poisson manifold
P(M) = P(R2) with the standard canonical Heisenberg–Weil Poissonian structure on it:

{q, q}P(R2) = 0 = {p, p}P(R2), {p, q}P(R2) = 1, (25)

where (q, p) ∈ R
2. Then expressions (24) for N = 2 give rise to the following relationships

ẽ
(2)
1 (q1, q2, p1, p2) := (Dz ⊗ Dz)∆(X̃1)

= 2
sinh

(
z
2p1

)
z

cos q1 exp
(z

2
p1

)
+ 2 exp

(
−z

2
p1

) sinh
(

z
2p2

)
z

cos q2,

ẽ
(2)
2 (q1, q2, p1, p2) := (Dz ⊗ Dz)∆(X̃2) = p1 + p2,

ẽ
(2)
3 (q1, q2, p1, p2) := (Dz ⊗ Dz)∆(X̃3)

= 2
sinh

(
z
2p1

)
z

sin q1 exp
(z

2
p2

)
+ 2 exp

(
−z

2
p1

) sinh
(

z
2p2

)
z

sin q2, (26)

where elements (q1, q2, p1, p2) ∈ P(R2) ⊗ P(R2) satisfy the induced by (25) Heisenberg–Weil
commutator relations:

{qi, qj}P(R2)⊗P(R2) = 0 = {pi, pj}P(R2)⊗P(R2), {pi, qj}P(R2)⊗P(R2) = δij (27)

for any i, j = 1, 2.
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4 Casimir elements and the Heisenberg–Weil algebra
related algebraic structures

Consider any Casimir element C̃ ∈ Uz(G) related with an R � z-deformed Lie algebra G structure
in the form

[X̃i, X̃j ] = ϑz,ij(X̃), (28)

where i, j = 1, n, n = dimG, and, by definition, [C̃, X̃i] = 0. The following general lemma holds.

Lemma 1. Let (Uz(G); ∆) be a co-algebra with generators satisfying (28) and C̃ ∈ Uz(G) be its
Casimir element; then

[∆(m)(C̃), ∆(N)(X̃i)](N+1)
⊗ Uz(G)

= 0 (29)

for any i = 1, n and m = 1, N.

As a simple corollary of this Lemma one finds from (29) that

[∆(m)(C̃), ∆(N)(C̃)](N+1)
⊗ Uz(G)

= 0

for any k, m ∈ Z+.

Consider now some realization (19) of our deformed Poisson co-algebra structure (28) and
check that the expression[

∆(m)(C(ẽ)), ∆(N)(H(ẽ))
]
(N+1)
⊗ P(M)

= 0 (30)

too for any m = 1, N, N ∈ Z+, if C(ẽ) ∈ I(P(M)), that is {C(ẽ), q}P(M) = 0 for any q ∈ M.
Since

H(N)(q) := ∆
(N−1)

(H(ẽ)) (31)

are in general, smooth functions on
(N+1)
⊗ M, which can be used as Hamilton ones subject to the

Poisson structure on
(N+1)
⊗ P(M), the expressions (31) mean nothing else that functions

γ(m)(q) := ∆
(N)

(C(ẽ)) (32)

are their invariants, that is

{
γ(m)(q),H(N)

(q)
}

(N+1)
⊗ P(M)

= 0 (33)

for any m = 1, N. Thereby, the functions (31) and (32) generate under some additional but
natural conditions a hierarchy of a priori Liouville–Arnold integrable Hamiltonian flows on the

Poisson manifold
(N+1)
⊗ P(M).

Consider now a case of a Poisson manifold P(M) and its co-algebra deformation Pz(G). Thus
for any coordinate points xi ∈ P(G), i = 1, n, the following relationships

{xi, xj} =
n∑

k=1

ck
ijxk := ϑij(x) (34)
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define a Poisson structure on P(G), related with the corresponding Lie algebra structure of G,
and there exists a representation (19), such that elements ẽi := Dz(X̃i) = ẽi(x) satisfy the
relationships {ẽi, ẽj}Pz(G) = ϑz,ij(ẽ) for any i = 1, n, with the limiting conditions

lim
z→0

ϑz,ij(ẽ) =
n∑

k=1

ck
ijxk, lim

z→0
ẽi(x) = xi (35)

for any i, j = 1, n being held. For instance, take the Poisson co-algebra Pz(so(2, 1)) for which
there exists a realization (19) in the following form:

ẽ1 := Dz(X̃1) =
sinh

(
z
2x2

)
zx2

x1, ẽ2 := Dz(X̃2) = x2, ẽ3 := Dz(X̃3) =
sinh

(
z
2x2

)
zx2

x3,

where xi ∈ P(so(2, 1)), i = 1, 3, satisfy the so(2, 1)-commutator relationships

{x2, x1}P(so(2,1)) = x3, {x2, x3}P(so(2,1)) = −x1, {x3, x1}P(so(2,1)) = x2, (36)

with the coproduct operator ∆ : Uz(so(2, 1)) → Uz(so(2, 1)) ⊗ Uz(so(2, 1)) being given by (18).
It is easy to check that conditions (34) and (35) hold.

The next example is related with the co-algebra Uz(π(1, 1)) of the Poincaré algebra π(1, 1)
for which the following non-deformed relationships

[X1, X2] = X3, [X1, X3] = X2, [X3, X2] = 0 (37)

hold. The corresponding coproduct ∆ : Uz(π(1, 1)) → Uz(π(1, 1)) ⊗ Uz(π(1, 1)) is given by the
Woronowicz [8] expressions

∆(X̃1) = I ⊗ X̃1 + X̃1 ⊗ I, ∆(X̃2) = exp
(
−z

2
X̃1

)
⊗ X̃1 + X̃1 ⊗ exp

(z

2
X̃1

)
,

∆(X̃3) = exp
(
−z

2
X̃1

)
⊗ X̃3 + X̃3 ⊗ exp

(z

2
X̃1

)
, (38)

where z ∈ R is a parameter. Under the deformed expressions (38) the elements X̃j ∈ Uz(π(1, 1)),
j = 1, 3, still satisfy undeformed commutator relationships, that is ϑz,ij(X̃) = ϑij(X)

∣∣
X⇒X̃

for
any z ∈ R, i, j = 1, 3, being given by (37). As a result, we can state that ẽi := Dz(X̃i) = ẽi(x) =
xi, where for xi ∈ P(π(1, 1)), i = 1, 3, the following Poisson structure

{x1, x2}P(π(1,1)) = x3, {x1, x3}P(π(1,1)) = x2, {x3, x2}P(π(1,1)) = 0 (39)

holds. Moreover, since C = x2
2 − x2

3 ∈ I(P(π(1, 1))), that is {C, xi}P(π(1,1)) = 0 for any i = 1, 3,

one can construct, making use of (31) and (32), integrable Hamiltonian systems on
(N)
⊗ P(π(1, 1)).

The same one can do subject to the discussed above Poisson co-algebra Pz(so(2, 1)) realized
by means of the Poisson manifold P(so(2, 1)), taking into account that the following element
C = x2

2 − x2
1 − x2

3 ∈ I(P(so(2, 1))) is a Casimir one.
Now we will consider a special extended Heisenberg–Weil co-algebra Uz(h4), called still the

oscillator co-algebra. The undeformed Lie algebra h4 commutator relationships take the form:

[n, a+] = a+, [n, a−] = −a−, [a−, a+] = m, [m, ·] = 0, (40)

where {n, a±, m} ⊂ h4 compile a basis of h4, dimh4 = 4. The Poisson co-algebra P(h4) is
naturally endowed with the Poisson structure like (40) and admits its realization (19) on the
Poisson manifold P(R2). Namely, on P(R2) one has

e± = D(a±) =
√

p exp(∓q), e1 = D(m) = 1, e0 = D(n) = p, (41)

where (q, p) ∈ R
2 and the Poisson structure on P(R2) is canonical, that is the same as (25).
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Closely related with the relationships (40) there is a generalized Uz(su(2)) co-algebra, for
which

[x3, x±] = ±x±, [y±, ·] = 0, [x+, x−] = y+ sin(2zx3) + y− cos(2zx3))
1

sin z
, (42)

where z ∈ C is an arbitrary parameter. The co-algebra structure is given now as follows:

∆(x±) = c±1(2)e
izx3 ⊗ x± + x± ⊗ c±2(1)e

−izx3 , ∆(x3) = I ⊗ x3 + x3 ⊗ I,

∆(c±i ) = c±i ⊗ c±i , ν(x∓) = −(c±1(2))
−1e−izx3x∓eizx3(c±2(1))

−1,

ν(c±i ) = (c±i )−1, ν(e±izx3) = e∓izx3 (43)

with c±i ∈ Uz(su(2)), i = 1, 2, being fixed elements. One can check that the Poisson structure
on Pz(su(2)) corresponding to (42) can be realized by means of the canonical Poisson structure
on the phase space P(R2) as follows:

[q, p] = i, Dz(x3) = q, Dz(x∓) = e±ipgz(q),

gz(q) = (k + sin[z(s − q)])(y+ sin[(q + s + 1)] + y− cos[z(q + s + 1)])1/2 1
sin z

, (44)

where k, s ∈ C are constant parameters. Thereby making use of (32) and (33), one can construct
a new class of Liouville integrable Hamiltonian flows.

5 The Heisenberg–Weil co-algebra structure
and related integrable flows

Consider the Heisenberg–Weil algebra commutator relationships (40) and the following homoge-
nous quadratic forms related with them

x1x2 − x2x1 − αx2
3 = 0,

x1x3 − x3x1 = 0, x2x3 − x3x2 = 0

}
R(x), (45)

where α ∈ C, xi ∈ A, i = 1, 3, are some elements of a free associative algebra A. The quadratic
algebra A/R(x) can be deformed via

x1x2 − z1x2x1 − αx2
3 = 0,

x1x3 − z2x3x1 = 0, x2x3 − z−1
2 x3x2 = 0,

}
Rz(x), (46)

where z1, z2 ∈ C\{0} are some parameters.
Let V be the vector space of columns X := (x1, x2, x3)ᵀ and define the following action hT :

V → (V ⊗ V ∗) ⊗ V , where, by definition, for any X ∈ V hT (X) = T ⊗ X. It is easy to check
that conditions (46) will be satisfied if the following relations [9]

T11T33 = T33T11, T12T33 = z−2
2 T33T12, T21T33 = z2

1T33T21,

T22T33 = T33T22, T31T33 = z2T33T31, T32T33 = z−1
1 T33T32,

T11T12 = z1T12T11, T21T22 = z1T22T21,

z2T11T32 − z2T32T11 = z1z2T12T31 − T31T12,

T21T32 − z1z2T32T21 = z1T22T31 − z2T31T22,

T11T22 − T22T11 = z1T12T21 − z−1
1 T21T12,

(T11T22 − z1T12T21) = αT 2
33 − T31T32 + z1T32T31 (47)
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hold. Put now for further convenience z1 = z2
2 := z2 ∈ C and compute the “quantum” determi-

nant D(T ) of the matrix T : (A/Rz(x))3 → (A/Rz(x))3:

D(T ) = (T11T22 − z−2T21T12)T33. (48)

Remark here that the determinant (48) is not central, that is

D−1T11 = T11D
−1, D−1T12 = z−6T12D

−1, D−1T33 = T33D
−1,

z−6D−1T21 = T12D
−1, D−1T22 = T22D

−1, z−3D−1T31 = T31D
−1,

D−1T32 = z−3T32D
−1. (49)

Taking into account properties (47)–(49), one can construct the Heisenberg–Weil related co-
algebra Uz(h) being a Hopf algebra with the following coproduct ∆, counit ε and antipode ν:

∆(T ) := T ⊗ T, ∆
(
D−1

)
:= D−1 ⊗ D−1,

ε(T ) := I, ε
(
D−1

)
:= I, ν(T ) := T−1, ν(D) := D−1. (50)

Based now on relationships (47), one can easily construct the Poisson tensor

{∆(T̃ ), ∆(T̃ )}Pz(h)⊗Pz(h) = ∆({T̃ , T̃}Pz(h)) := ϑz(∆(T̃ )),

subject to which all of functionals (32) will be commuting to each other, and moreover, will be
Casimir ones. Choosing some appropriate Hamiltonian functions H(N)(T̃ ) := ∆(N−1)(H(T̃ )) for
N ∈ Z+ one makes it possible to present a priori nontrivial integrable Hamiltonian systems. On
the other hand, the co-algebra Uz(h) built by (49) and (50) possesses the following fundamental
R-matrix [4] property:

R(z)(T ⊗ I)(I ⊗ T ) = (I ⊗ T )(T ⊗ I)R(z)

for some complex-valued matrix R(z) ∈ Aut (C3 ⊗ C
3), z ∈ C. The latter, as is well known [4],

gives rise to a regular procedure of constructing of an infinite hierarchy of Liouville-integrable
operator (quantum) Hamiltonian systems on related quantum Poissonian phase spaces. On their
special cases interesting for applications we plan to go on in another place.
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