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We discuss the construction of the twisted product of the interacting Fock spaces.

1 Introduction

Recall that the C*-probability space is the pair (A, ¢), where A is a C*-algebra and ¢ is a state.
The self-adjoint element a € A is called a self-adjoint quantum random variable. The distribution
of a with respect to ¢ is a probability measure 1 on R such that

o(a) = [ dute)
R
Remark 1. If A is a *-algebra or W*-algebra then the corresponding spaces are called the
x-algebraic and W*-algebraic quantum probability spaces respectively.
The notion of monotone independence was introduced by N. Muraki in [10].

Definition 1. The family {Y;, ¢ = 1,...,n} of random variables in (A, ¢) is called anti-
monotone independent if the following two conditions hold

L YPYTYE = o(Y])Y]Yy for any i > j < k and p,s € N.
2. Forany i] <ig < -+ <ig<j>jt> > jo> 1

S

t
(Vi - Yivvi v = [T e(vi)e(v) IT o(viE).
w=1

v=1

The notation ¢ < j > k means ¢ < j, k < jand i > j < k means i > j, k > j.
The notion of boolean independence was studied by many authors, see for example [11].

Definition 2. Let (B, ¢) be the x-algebraic probability space. The family of elements {X;, i € Z}
is called boolean independent if one has

O(XR X7 Xo) = o(X3) e (X57) - o(XT7)
for any i1 #£ig # --- #in € T.

The notion of the interacting Fock space was introduced by L. Accardi, Y. Lu and I. Volovich,
see [2]. Let ‘H be the Hilbert space. Denote by 7 (H) the full tensor space over H and by w the
vacuum vector. Then construct operators of the creation a(f), f € H,

af)fi®f@ Qf=fR/Q ® fn, neN, a(f)w=Ff.

Finally for any n € N we supply H®" with some scalar product (- | -}, and define the scalar
product (- | -) on the 7 (H) by the rule

HE LH®™, m#n, (x|y)={(z|yn, xyeH
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The operators a*(f), f € H are called the annihilation operators. The following properties of
the annihilation operators are obvious

a*(flw =0, a*(f): HE™" — HE L, n € N.

Definition 3. The system F = (T(H), (- ]-),a(f),a*(f), fe H) is called the interacting Fock
space.

The operators X (f) = a(f)+a*(f), f € H are called the field operators and the operator N,
defined by the rule

Nw =0, NhHh® @ f)=kfi® - fi, keN

is called the number operator. The vector state associated with vacuum vector w is called
Fock state. If dimH = 1 then the corresponding interacting Fock space is called a one-mode
interacting Fock space.

The role of the one-mode interacting Fock spaces in quantum probability was clarified by
L. Accardi and M. Bozejko in [1]. Namely, it was shown that any self-adjoint quantum variable
can be realized in the form a + a* + f(N), where a, a*, N are the creation, annihilation and the
number operators acting on some one-mode interacting Fock space.

Let us discuss some type of general central limit theorem of the type considered by R. Speicher
and W. von Waldenfels, see [15].

Theorem 1. Consider the x-algebra A and state ¢ and the sequence of elements a;,a; € A,
t € N. Denote by ba;—1 := a;, ba; := a} and X; := a; + a;. Put Sy to be

gy o X1t -+ Xy
N=—"F=""
VN

Suppose that the following assumptions are satisfied.

(i) For any odd n € N one has ¢(by(1y -+ bs(n)) = 0.

1) For even n the mized moment ¢(by(1) - bon)) 7 0 only if (o(1),...,0(n)) is the permu-
1) (n)
tation (with replications) of the collection

{201 — 1,201, 2y — 1,29, ..., 20 — 1,205, k <n/2}.

(iii) Let (o(1),...,0(n)) be the permutation of the collection
{2i1 — 1, 2i1, 2i2 — 1, 2i2, ey Qik — 1, Qik, k < n/2},

where i} < ig < -+ <. Then for any {j1 < jo < --- < ji} construct (5(1),---,0(n)) by
the rule

5(i) =2js, if o(i)=2is, o(i)=2js—1, if o(i)=2is—1.

Obviously the relation o ~ ¢ is equivalence. Then if o and o are equivalent permutations
with property to~'(i) = 1, we have the equality

(bo(1) -+ bon)) = d(bz(1) - b5 (n))-
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(iv) For any even n € N there ezists the constant C,, > 0 such that
Vo ’(b(bg(l) T ba(n)’ < Ch.

Then for even n
Am o(SR) = Z (s (n))-

For odd n
o(Sy)=0 VY N.

Proof. We use the standard arguments, see, for example [15]. For any even n on has

$(Sy)=N"2 Z A(bo(1) *bo(n))-

By the condition (ii) we have consider only o which are the permutations of the collections
{21 — 1,241,209 — 1,209, ..., 20 — 1,2k, k <n/2}.

Denote by M the union of the classes of equivalence of o. Let M}y be the set of classes of
equivalence consisting of o with #{o(i)} = 2k, k = 1,...,n/2. For any m € My there exists
a unique o, € m, which is the permutation with replications of the collection {1,2,...,2k}.
Obviously, for any m € My, one has fm = C’jli,, since any o € m is uniquely determined by the
ordered collection 1 < i; < --- < i < N. Then

= N3 D7D D blboq) o)

k=1 meM; ocem

=NTEY D D ey o) NTE DD R0y b))

k<g meM, oem mEMn/z

Since the number of summands is finite and independent on N and

n . —n \n/2 1
Am NTECR =0, k<g,  lim NTICY" = o
and
NTEY Y D o) bom@)| SNTEY S D7D 101y bom ()
k<3 meM,; oceEm k<% meM, oEm
SCnZ ZN_%CJI%—%), N — oo.
k< meMy
Thus
hm ¢(SN Z ¢ om ( "'bam(n))'
.mEM n/2

Evidently, the canonical representatives oy of classes m € M,, 5 are the elements oy € Sp,
where we denote by S;, the group of permutations on n symbols; please do not confuse with Sy .
Finally

hm d(Sy) = /2, Z A(ba(1)** bo(n))-

The equality ¢(S%) = 0 for odd n is evident. |
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Example 1. Consider the family of centered identically distributed elements {a;,a}, i € N}
satisfying the following conditions

1. aja; = qaja;, aja; = qa;aj, t < j, q # 0.
2. If o(1) < --- < o(k), one has

D(Yo(1) Yok) = PWo(1)) -+ (Yo (k)
where ys € {as, al, alas, asal}.

Then the assumptions of the central limit theorem hold. Moreover, if we suppose that operators
a;, a;, i € N are the creation and annihilation operators acting on the interacting Fock space and
¢ is the Fock functional, then we additionally have the property ¢(by(1) - by(2x)) # 0, where
o € Sop, only if 071(2i) < 07 1(2i — 1) for any i = 1,..., k.

In particular, if a;, a] are the creation and annihilation operators on the twisted product of
copies of the one-mode interacting Fock space, see next Section, and ¢ is the Fock state, the
conditions above are satisfied.

Example 2. Suppose that X;, i € N are anti-monotone independent centered symmetric iden-
tically distributed random variables with variance 1. Then one can realize them as the field
operators acting on the monotone product of the one-mode interacting Fock spaces, i.e. suppose
that X; = a; +a], a; the creation and a; the annihilation operators and ¢ is the Fock state. Let
us find the measure given by the central limit theorem. To do it we note that qb(bg(l) ‘e ba(gm))
is either 1 or 0. Let us find the number of the non-zero summands in the sum

> dboy - bom)) (1)

og€Som
Firstly note that ¢(Y1a;Y2a}Y3) = 0 if Y5 # 1, here
Yi = H bo(5)s Yo = H bo(j)s Y5 = H bo(j)-
j<o—1(2i—-1) o~ 1(2i—1)<j<o—1(2i) o~ 1(21)<y

Further, by definition of the anti-monotone independence if Y> # 1 we have ¢(Y1aiYaa1Y3) =
d(a7)o(Y1YealYs) = 0, here

= I o Y, = II boy Ya= [] ot
j<o—1(2) o~ 1(2)<j<o—1(1) o 1(2i)<j

Hence if ¢(by(1)---0(n)) # 0 we have Y = 1 and

P(bo1) - - o(n)) = ¢p(Yraja1Y3) = d(ajar)p(Y1Y3),

where Y1Y3 is any product of as,a3,...,am,a;, where each term appears only once. Let ky,
be the number of the non-zero summands in (1), then arguments presented above imply the
following recurrent formula

k‘m = (2m — 1)k5m,1
Indeed, we have 2m — 1 different positions for aja; in our permutation. Evidently, k1 = 1, hence

Ep = lim _¢(5 my — @2m-1! _cgy

N—oo m/! m! 2m ’

and these moments correspond to the arcsin distribution with density

du(z) =1/ x( - V2, \/5)\/%
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Example 3. Boolean central limit theorem. Let {a;, a}} are boolean independent family of the
creation and annihilation operators acting on the boolean Fock space. As above suppose that ¢
is the Fock state and ¢(afa;) = 1,47 =1,...,d. Then all conditions of the central limit theorem
are satisfied. Since for any i

& (Ylaf”YQag‘f”yg) — (V1) (az@”) $(Y2) (ag—aﬂ) $(Y3) =0, if Ya#lore =1,

where ¢; € {1,—1} and agl) = ag, oY = ai. Hence, as in the monotone case, we have
¢(b0(1) t ba(Qn)) 7& 0 only if
bo(l) T ba(2n) = Ylaialy})

P(bo(1) -+ bo(2n)) = d(ajar)p(Y1)d(Y3),

where Y7 is the word obtained by some permutation of the word a; | iy - --afkaik, 1 < 19 <
- < i € {2,...,n} and analogously for Y3. The arguments presented above shows that

B(bo(1) - bo(2n)) # 0 if and only if
bo(1) = bo(an) = (1) @n(1) " Gy Im(n) = 1
where 7 € 5, is any permutation. Hence we have
1
: 2ny . — o
A}gnoo o(S:") = n‘n! =1

80, Map—1 = 0 and mg, = 1 — the moments of the discrete measure concentrated on {—1,1}.

2 Twisted product

In this Section we discuss the construction of the twisted product Fock space. This is the special
kind of the interacting Fock space.
Let Z be totally ordered set. Consider the collection of the one-mode interacting Fock spaces

{(T(Hi), ai,a; | i€},
Let ©; € 7(H;) be vacuum vector, consider the orthonormal system

(e, nez},

(2

such that 62(0) = Q; and aiegn) = agn)e,ﬂ_l, n € Z4. Denote by ¢; the Fock state on 7 (H;).
Then consider the Hilbert space 7 with orthonormal basis
Q, g™ i<...<iy, keN, i;eI, nyeN, s=1,... k

i1 iK

Further define the creation operators a;, j € 7

a;f) = ag-o)e;»l),
53‘61(-?1) Q- ® ez(:k) _ MkQSO)eg?l) D ® eg:k) ® 621)7 P>,
’djeg?l) R - ® eZ“) ® egﬁ-l) Q- ® ez(:k)
=PV e e @g) ol o e, i <j <iu,
G e g e .. @™
= prttneiglt)em) g g et g et g @ el™, j =4,
5]‘61('?1) QR ® eg:k) _ a§0)e§1) ® €Z(1111) Q- ® el(:k)’ j < iy
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For the adjoint (annihilation) operators a; one has the following

E;TQ:O,
~ (n1) (nk) _ . .
aje, " ® - Qe =0, j#is, s=1,...,k,

5*6(”1) R ® ez(':LS) ® e(nS“) R ® e(”k)

J i Ts+1 ik
= (@t @)™ @ g™ e @ @™, j =i,
where we identify ez(»:”) K 652) (SR eEZ’“) with ez(‘?l) Q- ® ez(:ljl_l) ® ez(‘?s:rl)'

We call the interacting Fock space (7, a;,a;,i € ) the twisted product of the one-mode
interacting Fock spaces (7 (H;),a;,a}), ¢ € Z with the twist parameter 1 € C. Below we denote
by ¢ the Fock state, i.e. the vector state defined by €2, on 7.

It is easy to verify that the operators a;, a; and a;, aj, ¢ > j satisfy the p-commutation
relations, i.e.

aja; = paga;,  Ga; = paa;.
One can verify also that the joint distributions of a;, a; with respect to ¢; and a;, a; with respect
to ¢ coincide, i.e. for any non-commutative polynomial p(x,y) one has

¢i(p(ai, 7)) = ¢(p(ai, a;)).

Finally note that for 4 = 1 one has the usual tensor product and for u = 0 the monotone product
of interacting Fock spaces considered by N. Muraki, see [12].

When we have the finite set Z = {1,2,...,d} the twisted product is just the twisted Fock
space constructed by W. Pusz and S.L. Woronowicz, see [13]. In this case the orthonormal basis
of 7 has the form

e§n1)®---®e((1nd), ns €2y, s=1,...,d,

where ) := ego) R - ® efio), ie. T = ®?:1 7 (H;). In this case the operators a;, i = 1,...,d can
be presented as tensor products

i—1 d
a; = ®d(u) ®a; ® ® 1,
j=1 j=i+1

where d(,u)eg-n) = ,u”eg-n), n € Zy,j=1,...,d. If we consider the special case u = 0, we get

the realization of the monotone independent non-commutative random variables constructed by
U. Franz, see [6]

i1 d
5i=®Pj®ai® ® 1.
j=1

j=i+1
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