Twisted Product of Fock Spaces

Daniil P. PROSKURIN

Department of Cybernetics, Kyiv Taras Shevchenko University, 60 Volodymyrs'ka Str., 01033 Kyiv, Ukraine
E-mail: prosk@unicyb.kiev.ua

We discuss the construction of the twisted product of the interacting Fock spaces.

1 Introduction

Recall that the C^{*}-probability space is the pair (\mathcal{A}, ϕ), where \mathcal{A} is a C^{*}-algebra and ϕ is a state. The self-adjoint element $a \in \mathcal{A}$ is called a self-adjoint quantum random variable. The distribution of a with respect to ϕ is a probability measure μ on \mathbb{R} such that

$$
\phi\left(a^{k}\right)=\int_{\mathbb{R}} t^{k} d \mu(t)
$$

Remark 1. If \mathcal{A} is a $*$-algebra or W^{*}-algebra then the corresponding spaces are called the *-algebraic and W^{*}-algebraic quantum probability spaces respectively.

The notion of monotone independence was introduced by N. Muraki in [10].
Definition 1. The family $\left\{Y_{i}, i=1, \ldots, n\right\}$ of random variables in (\mathcal{A}, ϕ) is called antimonotone independent if the following two conditions hold

1. $Y_{i}^{p} Y_{j}^{r} Y_{k}^{s}=\phi\left(Y_{j}^{r}\right) Y_{i}^{p} Y_{k}^{s}$ for any $i>j<k$ and $p, s \in \mathbb{N}$.
2. For any $i_{1}<i_{2}<\cdots<i_{s}<j>j_{t}>\cdots>j_{2}>j_{1}$

$$
\phi\left(Y_{i_{1}}^{k_{1}} \cdots Y_{i_{s}}^{k_{s}} Y_{j}^{l} Y_{j_{t}}^{r_{t}} \cdots Y_{j_{1}}^{r_{1}}\right)=\prod_{\nu=1}^{s} \phi\left(Y_{i_{\nu}}^{k_{\nu}}\right) \phi\left(Y_{j}^{l}\right) \prod_{\omega=1}^{t} \phi\left(Y_{i_{\omega}}^{k_{\omega}}\right)
$$

The notation $i<j>k$ means $i<j, k<j$ and $i>j<k$ means $i>j, k>j$.
The notion of boolean independence was studied by many authors, see for example [11].
Definition 2. Let (\mathcal{B}, ϕ) be the $*$-algebraic probability space. The family of elements $\left\{X_{i}, i \in \mathcal{I}\right\}$ is called boolean independent if one has

$$
\phi\left(X_{i_{1}}^{k_{1}} X_{i_{2}}^{k_{2}} \cdots X_{i_{n}}^{k_{n}}\right)=\phi\left(X_{i_{1}}^{k_{1}}\right) \phi\left(X_{i_{2}}^{k_{2}}\right) \cdots \phi\left(X_{i_{n}}^{k_{n}}\right)
$$

for any $i_{1} \neq i_{2} \neq \cdots \neq i_{n} \in \mathcal{I}$.
The notion of the interacting Fock space was introduced by L. Accardi, Y. Lu and I. Volovich, see [2]. Let \mathcal{H} be the Hilbert space. Denote by $\mathcal{T}(\mathcal{H})$ the full tensor space over \mathcal{H} and by ω the vacuum vector. Then construct operators of the creation $a(f), f \in \mathcal{H}$,

$$
a(f) f_{1} \otimes f_{2} \otimes \cdots \otimes f_{n}=f \otimes f_{1} \otimes \cdots \otimes f_{n}, \quad n \in \mathbb{N}, \quad a(f) \omega=f
$$

Finally for any $n \in \mathbb{N}$ we supply $\mathcal{H}^{\otimes n}$ with some scalar product $\langle\cdot \mid \cdot\rangle_{n}$ and define the scalar product $\langle\cdot \mid \cdot\rangle$ on the $\mathcal{T}(\mathcal{H})$ by the rule

$$
\mathcal{H}^{\otimes n} \perp \mathcal{H}^{\otimes m}, \quad m \neq n, \quad\langle x \mid y\rangle=\langle x \mid y\rangle_{n}, \quad x, y \in \mathcal{H}^{\otimes n}
$$

The operators $a^{*}(f), f \in \mathcal{H}$ are called the annihilation operators. The following properties of the annihilation operators are obvious

$$
a^{*}(f) \omega=0, \quad a^{*}(f): \mathcal{H}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n-1}, \quad n \in \mathbb{N} .
$$

Definition 3. The system $\mathcal{F}=\left(\mathcal{T}(H),\langle\cdot \mid \cdot\rangle, a(f), a^{*}(f), f \in \mathcal{H}\right)$ is called the interacting Fock space.

The operators $X(f)=a(f)+a^{*}(f), f \in \mathcal{H}$ are called the field operators and the operator N, defined by the rule

$$
N \omega=0, \quad N\left(f_{1} \otimes \cdots \otimes f_{k}\right)=k f_{1} \otimes \cdots \otimes f_{k}, \quad k \in \mathbb{N}
$$

is called the number operator. The vector state associated with vacuum vector ω is called Fock state. If $\operatorname{dim} \mathcal{H}=1$ then the corresponding interacting Fock space is called a one-mode interacting Fock space.

The role of the one-mode interacting Fock spaces in quantum probability was clarified by L. Accardi and M. Bożejko in [1]. Namely, it was shown that any self-adjoint quantum variable can be realized in the form $a+a^{*}+f(N)$, where a, a^{*}, N are the creation, annihilation and the number operators acting on some one-mode interacting Fock space.

Let us discuss some type of general central limit theorem of the type considered by R. Speicher and W. von Waldenfels, see [15].

Theorem 1. Consider the $*$-algebra \mathcal{A} and state ϕ and the sequence of elements $a_{i}, a_{i}^{*} \in \mathcal{A}$, $i \in \mathbb{N}$. Denote by $b_{2 i-1}:=a_{i}, b_{2 i}:=a_{i}^{*}$ and $X_{i}:=a_{i}+a_{i}^{*}$. Put S_{N} to be

$$
S_{N}=\frac{X_{1}+\cdots+X_{N}}{\sqrt{N}}
$$

Suppose that the following assumptions are satisfied.
(i) For any odd $n \in \mathbb{N}$ one has $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right)=0$.
(ii) For even n the mixed moment $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right) \neq 0$ only if $(\sigma(1), \ldots, \sigma(n))$ is the permutation (with replications) of the collection

$$
\left\{2 i_{1}-1,2 i_{1}, 2 i_{2}-1,2 i_{2}, \ldots, 2 i_{k}-1,2 i_{k}, k \leq n / 2\right\} .
$$

(iii) Let $(\sigma(1), \ldots, \sigma(n))$ be the permutation of the collection

$$
\left\{2 i_{1}-1,2 i_{1}, 2 i_{2}-1,2 i_{2}, \ldots, 2 i_{k}-1,2 i_{k}, k \leq n / 2\right\}
$$

where $i_{1}<i_{2}<\cdots<i_{k}$. Then for any $\left\{j_{1}<j_{2}<\cdots<j_{k}\right\}$ construct $(\widetilde{\sigma}(1), \cdots, \widetilde{\sigma}(n))$ by the rule

$$
\widetilde{\sigma}(i)=2 j_{s}, \quad \text { if } \quad \sigma(i)=2 i_{s}, \quad \widetilde{\sigma}(i)=2 j_{s}-1, \quad \text { if } \quad \sigma(i)=2 i_{s}-1 .
$$

Obviously the relation $\sigma \sim \widetilde{\sigma}$ is equivalence. Then if σ and $\widetilde{\sigma}$ are equivalent permutations with property $\sharp \sigma^{-1}(i)=1$, we have the equality

$$
\phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right)=\phi\left(b_{\widetilde{\sigma}(1)} \cdots b_{\widetilde{\sigma}(n)}\right) .
$$

(iv) For any even $n \in \mathbb{N}$ there exists the constant $C_{n}>0$ such that

$$
\forall \sigma \quad \mid \phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)} \mid<C_{n} .\right.
$$

Then for even n

$$
\lim _{N \rightarrow \infty} \phi\left(S_{N}^{n}\right)=\frac{1}{(n / 2)!} \sum_{\sigma \in S_{n}} \phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right) .
$$

For odd n

$$
\phi\left(S_{N}^{n}\right)=0 \quad \forall N
$$

Proof. We use the standard arguments, see, for example [15]. For any even n on has

$$
\phi\left(S_{N}^{n}\right)=N^{-\frac{n}{2}} \sum_{\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots 2 N\}} \phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right) .
$$

By the condition (ii) we have consider only σ which are the permutations of the collections

$$
\left\{2 i_{1}-1,2 i_{1}, 2 i_{2}-1,2 i_{2}, \ldots, 2 i_{k}-1,2 i_{k}, k \leq n / 2\right\}
$$

Denote by \mathcal{M} the union of the classes of equivalence of σ. Let \mathcal{M}_{k} be the set of classes of equivalence consisting of σ with $\sharp\{\sigma(i)\}=2 k, k=1, \ldots, n / 2$. For any $\mathfrak{m} \in \mathcal{M}_{k}$ there exists a unique $\sigma_{\mathfrak{m}} \in \mathfrak{m}$, which is the permutation with replications of the collection $\{1,2, \ldots, 2 k\}$. Obviously, for any $\mathfrak{m} \in \mathcal{M}_{k}$ one has $\sharp \mathfrak{m}=C_{N}^{k}$, since any $\sigma \in \mathfrak{m}$ is uniquely determined by the ordered collection $1 \leq i_{1}<\cdots<i_{k} \leq N$. Then

$$
\begin{aligned}
\phi\left(S_{N}^{n}\right) & =N^{-\frac{n}{2}} \sum_{k=1}^{\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{k}} \sum_{\sigma \in \mathfrak{m}} \phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right) \\
& =N^{-\frac{n}{2}} \sum_{k<\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{k}} \sum_{\sigma \in \mathfrak{m}} \phi\left(b_{\sigma_{\mathfrak{m}}(1)} \cdots b_{\sigma_{\mathfrak{m}}(n)}\right)+N^{-\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{n / 2}} C_{N}^{n / 2} \phi\left(b_{\sigma_{\mathfrak{m}}(1)} \cdots b_{\sigma_{\mathfrak{m}}(n)}\right) .
\end{aligned}
$$

Since the number of summands is finite and independent on N and

$$
\lim _{N \rightarrow \infty} N^{-\frac{n}{2}} C_{N}^{k}=0, \quad k<\frac{n}{2}, \quad \lim _{N \rightarrow \infty} N^{-\frac{n}{2}} C_{N}^{n / 2}=\frac{1}{(n / 2)!}
$$

and

$$
\begin{aligned}
& \left|N^{-\frac{n}{2}} \sum_{k<\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{k}} \sum_{\sigma \in \mathfrak{m}} \phi\left(b_{\sigma_{\mathfrak{m}}(1)} \cdots b_{\sigma_{\mathfrak{m}}(n)}\right)\right| \leq N^{-\frac{n}{2}} \sum_{k<\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{k}} \sum_{\sigma \in \mathfrak{m}}\left|\phi\left(b_{\sigma_{\mathfrak{m}}(1)} \cdots b_{\sigma_{\mathfrak{m}}(n)}\right)\right| \\
& \quad \leq C_{n} \sum_{k<\frac{n}{2}} \sum_{\mathfrak{m} \in \mathcal{M}_{k}} N^{-\frac{n}{2}} C_{N}^{k} \rightarrow 0, \quad N \rightarrow \infty .
\end{aligned}
$$

Thus

$$
\lim _{N \rightarrow \infty} \phi\left(S_{N}^{n}\right)=\frac{1}{(n / 2)!} \sum_{\mathfrak{m} \in \mathcal{M}_{n / 2}} \phi\left(b_{\sigma_{\mathfrak{m}}(1)} \cdots b_{\sigma_{\mathfrak{m}}(n)}\right)
$$

Evidently, the canonical representatives $\sigma_{\mathfrak{m}}$ of classes $\mathfrak{m} \in \mathcal{M}_{n / 2}$ are the elements $\sigma_{\mathfrak{m}} \in S_{n}$, where we denote by S_{n} the group of permutations on n symbols; please do not confuse with S_{N}. Finally

$$
\lim _{N \rightarrow \infty} \phi\left(S_{N}^{n}\right)=\frac{1}{(n / 2)!} \sum_{\sigma \in S_{n}} \phi\left(b_{\sigma(1)} \cdots b_{\sigma(n)}\right) .
$$

The equality $\phi\left(S_{N}^{n}\right)=0$ for odd n is evident.

Example 1. Consider the family of centered identically distributed elements $\left\{a_{i}, a_{i}^{*}, i \in \mathbb{N}\right\}$ satisfying the following conditions

1. $a_{i}^{*} a_{j}=q a_{j} a_{i}^{*}, a_{j} a_{i}=q a_{i} a_{j}, i<j, q \neq 0$.
2. If $\sigma(1)<\cdots<\sigma(k)$, one has

$$
\phi\left(y_{\sigma(1)} \cdots y_{\sigma(k)}\right)=\phi\left(y_{\sigma(1)}\right) \cdots \phi\left(y_{\sigma(k)}\right),
$$

where $y_{s} \in\left\{a_{s}, a_{s}^{*}, a_{s}^{*} a_{s}, a_{s} a_{s}^{*}\right\}$.
Then the assumptions of the central limit theorem hold. Moreover, if we suppose that operators $a_{i}, a_{i}^{*}, i \in \mathbb{N}$ are the creation and annihilation operators acting on the interacting Fock space and ϕ is the Fock functional, then we additionally have the property $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 k)}\right) \neq 0$, where $\sigma \in S_{2 k}$, only if $\sigma^{-1}(2 i)<\sigma^{-1}(2 i-1)$ for any $i=1, \ldots, k$.

In particular, if a_{i}, a_{i}^{*} are the creation and annihilation operators on the twisted product of copies of the one-mode interacting Fock space, see next Section, and ϕ is the Fock state, the conditions above are satisfied.

Example 2. Suppose that $X_{i}, i \in \mathbb{N}$ are anti-monotone independent centered symmetric identically distributed random variables with variance 1 . Then one can realize them as the field operators acting on the monotone product of the one-mode interacting Fock spaces, i.e. suppose that $X_{i}=a_{i}+a_{i}^{*}, a_{i}$ the creation and a_{i}^{*} the annihilation operators and ϕ is the Fock state. Let us find the measure given by the central limit theorem. To do it we note that $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 m)}\right)$ is either 1 or 0 . Let us find the number of the non-zero summands in the sum

$$
\begin{equation*}
\sum_{\sigma \in S_{2 m}} \phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 m)}\right) \tag{1}
\end{equation*}
$$

Firstly note that $\phi\left(Y_{1} a_{i} Y_{2} a_{i}^{*} Y_{3}\right)=0$ if $Y_{2} \neq 1$, here

$$
Y_{1}=\prod_{j<\sigma^{-1}(2 i-1)} b_{\sigma(j)}, \quad Y_{2}=\prod_{\sigma^{-1}(2 i-1)<j<\sigma^{-1}(2 i)} b_{\sigma(j)}, \quad Y_{3}=\prod_{\sigma^{-1}(2 i)<j} b_{\sigma(j)} .
$$

Further, by definition of the anti-monotone independence if $Y_{2} \neq 1$ we have $\phi\left(Y_{1} a_{1}^{*} Y_{2} a_{1} Y_{3}\right)=$ $\phi\left(a_{1}^{*}\right) \phi\left(Y_{1} Y_{2} a_{1}^{*} Y_{3}\right)=0$, here

$$
Y_{1}=\prod_{j<\sigma^{-1}(2)} b_{\sigma(j)}, \quad Y_{2}=\prod_{\sigma^{-1}(2)<j<\sigma^{-1}(1)} b_{\sigma(j)}, \quad Y_{3}=\prod_{\sigma^{-1}(2 i)<j} b_{\sigma(j)} .
$$

Hence if $\phi\left(b_{\sigma(1)} \cdots \sigma(n)\right) \neq 0$ we have $Y_{2}=1$ and

$$
\phi\left(b_{\sigma(1)} \cdots \sigma(n)\right)=\phi\left(Y_{1} a_{1}^{*} a_{1} Y_{3}\right)=\phi\left(a_{1}^{*} a_{1}\right) \phi\left(Y_{1} Y_{3}\right),
$$

where $Y_{1} Y_{3}$ is any product of $a_{2}, a_{2}^{*}, \ldots, a_{m}, a_{m}^{*}$ where each term appears only once. Let k_{m} be the number of the non-zero summands in (1), then arguments presented above imply the following recurrent formula

$$
k_{m}=(2 m-1) k_{m-1} .
$$

Indeed, we have $2 m-1$ different positions for $a_{1}^{*} a_{1}$ in our permutation. Evidently, $k_{1}=1$, hence

$$
k_{m}=\lim _{N \rightarrow \infty} \frac{1}{m!} \phi\left(S_{N}^{2 m}\right)=\frac{(2 m-1)!!}{m!}=\frac{C_{2 m}^{m}}{2^{m}}
$$

and these moments correspond to the arcsin distribution with density

$$
d \mu(x)=1 / \pi \chi(-\sqrt{2}, \sqrt{2}) \frac{d x}{\sqrt{2-x^{2}}} .
$$

Example 3. Boolean central limit theorem. Let $\left\{a_{i}, a_{i}^{*}\right\}$ are boolean independent family of the creation and annihilation operators acting on the boolean Fock space. As above suppose that ϕ is the Fock state and $\phi\left(a_{i}^{*} a_{i}\right)=1, i=1, \ldots, d$. Then all conditions of the central limit theorem are satisfied. Since for any i

$$
\phi\left(Y_{1} a_{i}^{\left(\varepsilon_{i}\right)} Y_{2} a_{i}^{\left(-\varepsilon_{i}\right)} Y_{3}\right)=\phi\left(Y_{1}\right) \phi\left(a_{i}^{\left(\varepsilon_{i}\right)}\right) \phi\left(Y_{2}\right) \phi\left(a_{i}^{\left(-\varepsilon_{i}\right)}\right) \phi\left(Y_{3}\right)=0, \quad \text { if } \quad Y_{2} \neq 1 \text { or } \varepsilon_{i}=1,
$$

where $\varepsilon_{i} \in\{1,-1\}$ and $a_{s}^{(1)}=a_{s}, a_{s}^{(-1)}=a_{s}^{*}$. Hence, as in the monotone case, we have $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 n)}\right) \neq 0$ only if

$$
b_{\sigma(1)} \cdots b_{\sigma(2 n)}=Y_{1} a_{1}^{*} a_{1} Y_{3}
$$

and

$$
\phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 n)}\right)=\phi\left(a_{1}^{*} a_{1}\right) \phi\left(Y_{1}\right) \phi\left(Y_{3}\right)
$$

where Y_{1} is the word obtained by some permutation of the word $a_{i_{1}}^{*} a_{i_{1}} \cdots a_{i_{k}}^{*} a_{i_{k}}, i_{1}<i_{2}<$ $\cdots<i_{k} \in\{2, \ldots, n\}$ and analogously for Y_{3}. The arguments presented above shows that $\phi\left(b_{\sigma(1)} \cdots b_{\sigma(2 n)}\right) \neq 0$ if and only if

$$
b_{\sigma(1)} \cdots b_{\sigma(2 n)}=a_{\pi(1)}^{*} a_{\pi(1)} \cdots a_{\pi(n)}^{*} a_{\pi(n)}=1
$$

where $\pi \in S_{n}$ is any permutation. Hence we have

$$
\lim _{N \rightarrow \infty} \phi\left(S_{n}^{2 n}\right)=\frac{1}{n!} n!=1
$$

so, $m_{2 n-1}=0$ and $m_{2 n}=1$ - the moments of the discrete measure concentrated on $\{-1,1\}$.

2 Twisted product

In this Section we discuss the construction of the twisted product Fock space. This is the special kind of the interacting Fock space.

Let \mathcal{I} be totally ordered set. Consider the collection of the one-mode interacting Fock spaces

$$
\left\{\left(\mathcal{T}\left(\mathcal{H}_{i}\right), a_{i}, a_{i}^{*} \mid i \in \mathcal{I}\right\}\right.
$$

Let $\Omega_{i} \in \mathcal{T}\left(\mathcal{H}_{i}\right)$ be vacuum vector, consider the orthonormal system

$$
\left\{e_{i}^{(n)}, n \in \mathbb{Z}_{+}\right\}
$$

such that $e_{i}^{(0)}:=\Omega_{i}$ and $a_{i} e_{i}^{(n)}=\alpha_{i}^{(n)} e_{n+1}, n \in \mathbb{Z}_{+}$. Denote by ϕ_{i} the Fock state on $\mathcal{T}\left(\mathcal{H}_{i}\right)$. Then consider the Hilbert space \mathcal{T} with orthonormal basis

$$
\Omega, \quad e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}, \quad i_{1}<\cdots<i_{k}, \quad k \in \mathbb{N}, \quad i_{s} \in \mathcal{I}, \quad n_{s} \in \mathbb{N}, \quad s=1, \ldots, k
$$

Further define the creation operators $\widetilde{a}_{j}, j \in \mathcal{I}$

$$
\begin{aligned}
& \widetilde{a}_{j} \Omega=\alpha_{j}^{(0)} e_{j}^{(1)}, \\
& \widetilde{a}_{j} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}=\mu^{k} \alpha_{j}^{(0)} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)} \otimes e_{j}^{(1)}, \quad j>i_{k}, \\
& \widetilde{a}_{j} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}\right)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)} \\
& \quad=\mu^{n_{1}+\cdots+n_{s}} \alpha_{j}^{(0)} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}\right)} \otimes e_{j}^{(1)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}, \quad i_{s}<j<i_{s+1}, \\
& \widetilde{a}_{j} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}\right)} \otimes e_{\left.i_{s+1}\right)}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{\left.i_{k}\right)}^{\left(n_{k}\right)} \\
& \quad=\mu^{n_{1}+\cdots+n_{s-1}} \alpha_{j}^{\left(n_{s}\right)} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}+1\right)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}, \quad j=i_{s}, \\
& \widetilde{a}_{j} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}=\alpha_{j}^{(0)} e_{j}^{(1)} \otimes e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}, \quad j<i_{1} .
\end{aligned}
$$

For the adjoint (annihilation) operators \widetilde{a}_{j}^{*} one has the following

$$
\begin{aligned}
& \widetilde{a}_{j}^{*} \Omega=0 \\
& \widetilde{a}_{j} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}=0, \quad j \neq i_{s}, \quad s=1, \ldots, k, \\
& \widetilde{a}_{j}^{*} e_{\left.i_{1}\right)}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}\right)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)} \\
& \quad=(\bar{\mu})^{n_{1}+\cdots+n_{s-1}}\left(\bar{\alpha}_{j}\right)^{\left(n_{s}-1\right)} e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{\left(n_{s}-1\right)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}, \quad j=i_{s},
\end{aligned}
$$

where we identify $e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s}}^{(0)} \otimes \cdots \otimes e_{i_{k}}^{\left(n_{k}\right)}$ with $e_{i_{1}}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{i_{s-1}}^{\left(n_{s-1}\right)} \otimes e_{i_{s+1}}^{\left(n_{s+1}\right)}$.
We call the interacting Fock space $\left(\mathcal{T}, \widetilde{a}_{i}, \widetilde{a}_{i}^{*}, i \in \mathcal{I}\right)$ the twisted product of the one-mode interacting Fock spaces $\left(\mathcal{T}\left(\mathcal{H}_{i}\right), a_{i}, a_{i}^{*}\right), i \in \mathcal{I}$ with the twist parameter $\mu \in \mathbb{C}$. Below we denote by ϕ the Fock state, i.e. the vector state defined by Ω, on \mathcal{T}.

It is easy to verify that the operators $\widetilde{a}_{i}, \widetilde{a}_{j}$ and $\widetilde{a}_{i}^{*}, \widetilde{a}_{j}, i>j$ satisfy the μ-commutation relations, i.e.

$$
\tilde{a}_{i}^{*} \widetilde{a}_{j}=\mu \widetilde{a}_{j} \widetilde{a}_{i}^{*}, \quad \widetilde{a}_{i} \widetilde{a}_{j}=\mu \widetilde{a}_{j} \widetilde{a}_{j} .
$$

One can verify also that the joint distributions of a_{i}, a_{i}^{*} with respect to ϕ_{i} and $\widetilde{a}_{i}, \widetilde{a}_{i}^{*}$ with respect to ϕ coincide, i.e. for any non-commutative polynomial $p(x, y)$ one has

$$
\phi_{i}\left(p\left(a_{i}, a_{i}^{*}\right)\right)=\phi\left(p\left(\widetilde{a}_{i}, \widetilde{a}_{i}^{*}\right)\right) .
$$

Finally note that for $\mu=1$ one has the usual tensor product and for $\mu=0$ the monotone product of interacting Fock spaces considered by N. Muraki, see [12].

When we have the finite set $\mathcal{I}=\{1,2, \ldots, d\}$ the twisted product is just the twisted Fock space constructed by W. Pusz and S.L. Woronowicz, see [13]. In this case the orthonormal basis of \mathcal{T} has the form

$$
e_{1}^{\left(n_{1}\right)} \otimes \cdots \otimes e_{d}^{\left(n_{d}\right)}, \quad n_{s} \in \mathbb{Z}_{+}, \quad s=1, \ldots, d
$$

where $\Omega:=e_{1}^{(0)} \otimes \cdots \otimes e_{d}^{(0)}$, i.e. $\mathcal{T}=\bigotimes_{i=1}^{d} \mathcal{T}\left(\mathcal{H}_{i}\right)$. In this case the operators $\widetilde{a}_{i}, i=1, \ldots, d$ can be presented as tensor products

$$
\widetilde{a}_{i}=\bigotimes_{j=1}^{i-1} d(\mu) \otimes a_{i} \otimes \bigotimes_{j=i+1}^{d} 1
$$

where $d(\mu) e_{j}^{(n)}=\mu^{n} e_{j}^{(n)}, n \in \mathbb{Z}_{+}, j=1, \ldots, d$. If we consider the special case $\mu=0$, we get the realization of the monotone independent non-commutative random variables constructed by U. Franz, see [6]

$$
\widetilde{a}_{i}=\bigotimes_{j=1}^{i-1} P_{j} \otimes a_{i} \otimes \bigotimes_{j=i+1}^{d} 1 .
$$

[1] Accardi L. and Bożejko M., Interacting Fock spaces and Gaussinization of probability measures, Infin. Dim. Anal., Quant. Prob. and Rel. Topics, 1998, V.1, N 4, 663-670.
[2] Accardi L., Lu Y. and Volovich I., Non-commutative (quantum) probability, master fields and stochastic bosonization, hep-th/9412241.
[3] Bożejko M., Kummerer B., Speicher R., q-Gaussian processes: non-commutative and classical aspects, Commun.Math.Phys., 1997, V.185, 129-154.
[4] Bożejko M. and Speicher R., An example of a generalized Brownian motion, Comm. Math. Phys., 1991, V.137, 1991, 519-531.
[5] Bożejko M. and Speicher R., An example of a generalized Brownian motion II, Infin. Dim. Anal., Quant. Prob. and Rel. Topics, 1992, V.7, 97-120.
[6] Franz U., Monotone independence is associative, Infin. Dim. Anal., Quant. Prob. and Rel. Topics, 2001, V.4, N 3, 401-407.
[7] Macfarlane A.J., On q-analogues of the quantum harmonic oscillator and the quantum group $S U(2)_{q}$, J. Phys. A, 1989, V.22, 4581-4588.
[8] Marcinek W., On commutation relation s for quons, Rep. Math. Phys., 1998, V.41, 155-172.
[9] Meyer P.-A., Quantum probability for probabilists, Lect. Notes Math., Vol. 1538, Springer Verlag, Berlin, 1995.
[10] Muraki N., Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dim. Anal., Quant. Prob. and Rel. Topics, 2001, V.4, N 1, 39-58.
[11] Muraki N., The five independences as quasi-universal products, Infin. Dim. Anal., Quant. Prob. and Rel. Topics, 2002, V.5, N 1, 113-134.
[12] Muraki N., The monotonic convolution and monotonic Lévy-Hinćin formula, Prob. Rel. Fields, to appear.
[13] Pusz W. and Woronowicz S.L., Twisted second quantization, Rep. Math. Phys., 1989, V.27, 251-263.
[14] Proskurin D. and Samoilenko Yu., Stability of the C^{*}-algebra associated with the twisted CCR, Algebras and Rep. Theory, 2002, V.5, 433-444.
[15] Speicher R. and von Waldenfels W., A general central limit theorem and invariance principle, in Quantum Probability and Related Topics, Editor L. Accardi, World Scientific, 1994, V.9, 371-387.
[16] Voiculescu D., Dykema K. and Nica A., Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, Vol. 1, Providence, RI, American Mathematical Society, 1992.

