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Twisted Product of Fock Spaces
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We discuss the construction of the twisted product of the interacting Fock spaces.

1 Introduction

Recall that the C∗-probability space is the pair (A, φ), where A is a C∗-algebra and φ is a state.
The self-adjoint element a ∈ A is called a self-adjoint quantum random variable. The distribution
of a with respect to φ is a probability measure µ on R such that

φ(ak) =
∫

R

tkdµ(t).

Remark 1. If A is a ∗-algebra or W ∗-algebra then the corresponding spaces are called the
∗-algebraic and W ∗-algebraic quantum probability spaces respectively.

The notion of monotone independence was introduced by N. Muraki in [10].

Definition 1. The family {Yi, i = 1, . . . , n} of random variables in (A, φ) is called anti-
monotone independent if the following two conditions hold

1. Y p
i Y r

j Y s
k = φ(Y r

j )Y p
i Y s

k for any i > j < k and p, s ∈ N.

2. For any i1 < i2 < · · · < is < j > jt > · · · > j2 > j1

φ
(
Y k1

i1
· · ·Y ks

is
Y l

j Y rt
jt

· · ·Y r1
j1

)
=

s∏
ν=1

φ
(
Y kν

iν

)
φ
(
Y l

j

) t∏
ω=1

φ
(
Y kω

iω

)
.

The notation i < j > k means i < j, k < j and i > j < k means i > j, k > j.
The notion of boolean independence was studied by many authors, see for example [11].

Definition 2. Let (B, φ) be the ∗-algebraic probability space. The family of elements {Xi, i ∈ I}
is called boolean independent if one has

φ
(
Xk1

i1
Xk2

i2
· · ·Xkn

in

)
= φ

(
Xk1

i1

)
φ
(
Xk2

i2

)
· · ·φ

(
Xkn

in

)
for any i1 �= i2 �= · · · �= in ∈ I.

The notion of the interacting Fock space was introduced by L. Accardi, Y. Lu and I. Volovich,
see [2]. Let H be the Hilbert space. Denote by T (H) the full tensor space over H and by ω the
vacuum vector. Then construct operators of the creation a(f), f ∈ H,

a(f)f1 ⊗ f2 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn, n ∈ N, a(f)ω = f.

Finally for any n ∈ N we supply H⊗n with some scalar product 〈· | ·〉n and define the scalar
product 〈· | ·〉 on the T (H) by the rule

H⊗n ⊥ H⊗m, m �= n, 〈x | y〉 = 〈x | y〉n, x, y ∈ H⊗n.
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The operators a∗(f), f ∈ H are called the annihilation operators. The following properties of
the annihilation operators are obvious

a∗(f)ω = 0, a∗(f) : H⊗n → H⊗n−1, n ∈ N.

Definition 3. The system F =
(
T (H), 〈· | ·〉, a(f), a∗(f), f ∈ H

)
is called the interacting Fock

space.

The operators X(f) = a(f)+a∗(f), f ∈ H are called the field operators and the operator N ,
defined by the rule

Nω = 0, N(f1 ⊗ · · · ⊗ fk) = kf1 ⊗ · · · ⊗ fk, k ∈ N

is called the number operator. The vector state associated with vacuum vector ω is called
Fock state. If dimH = 1 then the corresponding interacting Fock space is called a one-mode
interacting Fock space.

The role of the one-mode interacting Fock spaces in quantum probability was clarified by
L. Accardi and M. Bożejko in [1]. Namely, it was shown that any self-adjoint quantum variable
can be realized in the form a + a∗ + f(N), where a, a∗, N are the creation, annihilation and the
number operators acting on some one-mode interacting Fock space.

Let us discuss some type of general central limit theorem of the type considered by R. Speicher
and W. von Waldenfels, see [15].

Theorem 1. Consider the ∗-algebra A and state φ and the sequence of elements ai, a
∗
i ∈ A,

i ∈ N. Denote by b2i−1 := ai, b2i := a∗i and Xi := ai + a∗i . Put SN to be

SN =
X1 + · · · + XN√

N
.

Suppose that the following assumptions are satisfied.

(i) For any odd n ∈ N one has φ(bσ(1) · · · bσ(n)) = 0.

(ii) For even n the mixed moment φ(bσ(1) · · · bσ(n)) �= 0 only if (σ(1), . . . , σ(n)) is the permu-
tation (with replications) of the collection

{2i1 − 1, 2i1, 2i2 − 1, 2i2, . . . , 2ik − 1, 2ik, k ≤ n/2}.

(iii) Let (σ(1), . . . , σ(n)) be the permutation of the collection

{2i1 − 1, 2i1, 2i2 − 1, 2i2, . . . , 2ik − 1, 2ik, k ≤ n/2},

where i1 < i2 < · · · < ik. Then for any {j1 < j2 < · · · < jk} construct (σ̃(1), · · · , σ̃(n)) by
the rule

σ̃(i) = 2js, if σ(i) = 2is, σ̃(i) = 2js − 1, if σ(i) = 2is − 1.

Obviously the relation σ ∼ σ̃ is equivalence. Then if σ and σ̃ are equivalent permutations
with property �σ−1(i) = 1, we have the equality

φ(bσ(1) · · · bσ(n)) = φ(bσ̃(1) · · · bσ̃(n)).



1174 D.P. Proskurin

(iv) For any even n ∈ N there exists the constant Cn > 0 such that

∀ σ |φ(bσ(1) · · · bσ(n)| < Cn.

Then for even n

lim
N→∞

φ(Sn
N ) =

1
(n/2)!

∑
σ∈Sn

φ(bσ(1) · · · bσ(n)).

For odd n

φ(Sn
N ) = 0 ∀ N.

Proof. We use the standard arguments, see, for example [15]. For any even n on has

φ(Sn
N ) = N−n

2

∑
σ : {1,...,n}→{1,...2N}

φ(bσ(1) · · · bσ(n)).

By the condition (ii) we have consider only σ which are the permutations of the collections

{2i1 − 1, 2i1, 2i2 − 1, 2i2, . . . , 2ik − 1, 2ik, k ≤ n/2}.

Denote by M the union of the classes of equivalence of σ. Let Mk be the set of classes of
equivalence consisting of σ with �{σ(i)} = 2k, k = 1, . . . , n/2. For any m ∈ Mk there exists
a unique σm ∈ m, which is the permutation with replications of the collection {1, 2, . . . , 2k}.
Obviously, for any m ∈ Mk one has �m = Ck

N , since any σ ∈ m is uniquely determined by the
ordered collection 1 ≤ i1 < · · · < ik ≤ N . Then

φ(Sn
N ) = N−n

2

n
2∑

k=1

∑
m∈Mk

∑
σ∈m

φ(bσ(1) · · · bσ(n))

= N−n
2

∑
k< n

2

∑
m∈Mk

∑
σ∈m

φ(bσm(1) · · · bσm(n)) + N−n
2

∑
m∈Mn/2

C
n/2
N φ(bσm(1) · · · bσm(n)).

Since the number of summands is finite and independent on N and

lim
N→∞

N−n
2 Ck

N = 0, k <
n

2
, lim

N→∞
N−n

2 C
n/2
N =

1
(n/2)!

and ∣∣∣∣∣∣N−n
2

∑
k< n

2

∑
m∈Mk

∑
σ∈m

φ(bσm(1) · · · bσm(n))

∣∣∣∣∣∣ ≤ N−n
2

∑
k< n

2

∑
m∈Mk

∑
σ∈m

|φ(bσm(1) · · · bσm(n))|

≤ Cn

∑
k< n

2

∑
m∈Mk

N−n
2 Ck

N → 0, N → ∞.

Thus

lim
N→∞

φ(Sn
N ) =

1
(n/2)!

∑
m∈Mn/2

φ(bσm(1) · · · bσm(n)).

Evidently, the canonical representatives σm of classes m ∈ Mn/2 are the elements σm ∈ Sn,
where we denote by Sn the group of permutations on n symbols; please do not confuse with SN .
Finally

lim
N→∞

φ(Sn
N ) =

1
(n/2)!

∑
σ∈Sn

φ(bσ(1) · · · bσ(n)).

The equality φ(Sn
N ) = 0 for odd n is evident. �
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Example 1. Consider the family of centered identically distributed elements {ai, a
∗
i , i ∈ N}

satisfying the following conditions

1. a∗i aj = qaja
∗
i , ajai = qaiaj , i < j, q �= 0.

2. If σ(1) < · · · < σ(k), one has

φ(yσ(1) · · · yσ(k)) = φ(yσ(1)) · · ·φ(yσ(k)),

where ys ∈ {as, a
∗
s, a

∗
sas, asa

∗
s}.

Then the assumptions of the central limit theorem hold. Moreover, if we suppose that operators
ai, a∗i , i ∈ N are the creation and annihilation operators acting on the interacting Fock space and
φ is the Fock functional, then we additionally have the property φ(bσ(1) · · · bσ(2k)) �= 0, where
σ ∈ S2k, only if σ−1(2i) < σ−1(2i − 1) for any i = 1, . . . , k.

In particular, if ai, a∗i are the creation and annihilation operators on the twisted product of
copies of the one-mode interacting Fock space, see next Section, and φ is the Fock state, the
conditions above are satisfied.

Example 2. Suppose that Xi, i ∈ N are anti-monotone independent centered symmetric iden-
tically distributed random variables with variance 1. Then one can realize them as the field
operators acting on the monotone product of the one-mode interacting Fock spaces, i.e. suppose
that Xi = ai +a∗i , ai the creation and a∗i the annihilation operators and φ is the Fock state. Let
us find the measure given by the central limit theorem. To do it we note that φ(bσ(1) · · · bσ(2m))
is either 1 or 0. Let us find the number of the non-zero summands in the sum∑

σ∈S2m

φ(bσ(1) · · · bσ(2m)) (1)

Firstly note that φ(Y1aiY2a
∗
i Y3) = 0 if Y2 �= 1, here

Y1 =
∏

j<σ−1(2i−1)

bσ(j), Y2 =
∏

σ−1(2i−1)<j<σ−1(2i)

bσ(j), Y3 =
∏

σ−1(2i)<j

bσ(j).

Further, by definition of the anti-monotone independence if Y2 �= 1 we have φ(Y1a
∗
1Y2a1Y3) =

φ(a∗1)φ(Y1Y2a
∗
1Y3) = 0, here

Y1 =
∏

j<σ−1(2)

bσ(j), Y2 =
∏

σ−1(2)<j<σ−1(1)

bσ(j), Y3 =
∏

σ−1(2i)<j

bσ(j).

Hence if φ(bσ(1) · · ·σ(n)) �= 0 we have Y2 = 1 and

φ(bσ(1) · · ·σ(n)) = φ(Y1a
∗
1a1Y3) = φ(a∗1a1)φ(Y1Y3),

where Y1Y3 is any product of a2, a
∗
2, . . . , am, a∗m where each term appears only once. Let km

be the number of the non-zero summands in (1), then arguments presented above imply the
following recurrent formula

km = (2m − 1)km−1.

Indeed, we have 2m−1 different positions for a∗1a1 in our permutation. Evidently, k1 = 1, hence

km = lim
N→∞

1
m!

φ(S2m
N ) =

(2m − 1)!!
m!

=
Cm

2m

2m
,

and these moments correspond to the arcsin distribution with density

dµ(x) = 1/π χ
(
−
√

2,
√

2
) dx√

2 − x2
.
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Example 3. Boolean central limit theorem. Let {ai, a
∗
i } are boolean independent family of the

creation and annihilation operators acting on the boolean Fock space. As above suppose that φ
is the Fock state and φ(a∗i ai) = 1, i = 1, . . . , d. Then all conditions of the central limit theorem
are satisfied. Since for any i

φ
(
Y1a

(εi)
i Y2a

(−εi)
i Y3

)
= φ(Y1)φ

(
a

(εi)
i

)
φ(Y2)φ

(
a

(−εi)
i

)
φ(Y3) = 0, if Y2 �= 1 or εi = 1,

where εi ∈ {1,−1} and a
(1)
s = as, a

(−1)
s = a∗s. Hence, as in the monotone case, we have

φ(bσ(1) · · · bσ(2n)) �= 0 only if

bσ(1) · · · bσ(2n) = Y1a
∗
1a1Y3

and

φ(bσ(1) · · · bσ(2n)) = φ(a∗1a1)φ(Y1)φ(Y3),

where Y1 is the word obtained by some permutation of the word a∗i1ai1 · · · a∗ikaik , i1 < i2 <
· · · < ik ∈ {2, . . . , n} and analogously for Y3. The arguments presented above shows that
φ(bσ(1) · · · bσ(2n)) �= 0 if and only if

bσ(1) · · · bσ(2n) = a∗π(1)aπ(1) · · · a∗π(n)aπ(n) = 1,

where π ∈ Sn is any permutation. Hence we have

lim
N→∞

φ(S2n
n ) =

1
n!

n! = 1

so, m2n−1 = 0 and m2n = 1 – the moments of the discrete measure concentrated on {−1, 1}.

2 Twisted product

In this Section we discuss the construction of the twisted product Fock space. This is the special
kind of the interacting Fock space.

Let I be totally ordered set. Consider the collection of the one-mode interacting Fock spaces

{(T (Hi), ai, a
∗
i | i ∈ I}.

Let Ωi ∈ T (Hi) be vacuum vector, consider the orthonormal system{
e
(n)
i , n ∈ Z+

}
,

such that e
(0)
i := Ωi and aie

(n)
i = α

(n)
i en+1, n ∈ Z+. Denote by φi the Fock state on T (Hi).

Then consider the Hilbert space T with orthonormal basis

Ω, e
(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

, i1 < · · · < ik, k ∈ N, is ∈ I, ns ∈ N, s = 1, . . . , k.

Further define the creation operators ãj , j ∈ I

ãjΩ = α
(0)
j e

(1)
j ,

ãje
(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

= µkα
(0)
j e

(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

⊗ e
(1)
j , j > ik,

ãje
(n1)
i1

⊗ · · · ⊗ e
(ns)
is

⊗ e
(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

= µn1+···+nsα
(0)
j e

(n1)
i1

⊗ · · · ⊗ e
(ns)
is

⊗ e
(1)
j ⊗ e

(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

, is < j < is+1,

ãje
(n1)
i1

⊗ · · · ⊗ e
(ns)
is

⊗ e
(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

= µn1+···+ns−1α
(ns)
j e

(n1)
i1

⊗ · · · ⊗ e
(ns+1)
is

⊗ e
(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

, j = is,

ãje
(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

= α
(0)
j e

(1)
j ⊗ e

(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

, j < i1.
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For the adjoint (annihilation) operators ã∗j one has the following

ã∗jΩ = 0,

ãje
(n1)
i1

⊗ · · · ⊗ e
(nk)
ik

= 0, j �= is, s = 1, . . . , k,

ã∗je
(n1)
i1

⊗ · · · ⊗ e
(ns)
is

⊗ e
(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

= (µ)n1+···+ns−1(αj)(ns−1)e
(n1)
i1

⊗ · · · ⊗ e
(ns−1)
is

⊗ e
(ns+1)
is+1

⊗ · · · ⊗ e
(nk)
ik

, j = is,

where we identify e
(n1)
i1

⊗ · · · ⊗ e
(0)
is

⊗ · · · ⊗ e
(nk)
ik

with e
(n1)
i1

⊗ · · · ⊗ e
(ns−1)
is−1

⊗ e
(ns+1)
is+1

.
We call the interacting Fock space (T , ãi, ã

∗
i , i ∈ I) the twisted product of the one-mode

interacting Fock spaces (T (Hi), ai, a
∗
i ), i ∈ I with the twist parameter µ ∈ C. Below we denote

by φ the Fock state, i.e. the vector state defined by Ω, on T .
It is easy to verify that the operators ãi, ãj and ã∗i , ãj , i > j satisfy the µ-commutation

relations, i.e.

ã∗i ãj = µãj ã
∗
i , ãiãj = µãj ãj .

One can verify also that the joint distributions of ai, a∗i with respect to φi and ãi, ã∗i with respect
to φ coincide, i.e. for any non-commutative polynomial p(x, y) one has

φi(p(ai, a
∗
i )) = φ(p(ãi, ã

∗
i )).

Finally note that for µ = 1 one has the usual tensor product and for µ = 0 the monotone product
of interacting Fock spaces considered by N. Muraki, see [12].

When we have the finite set I = {1, 2, . . . , d} the twisted product is just the twisted Fock
space constructed by W. Pusz and S.L. Woronowicz, see [13]. In this case the orthonormal basis
of T has the form

e
(n1)
1 ⊗ · · · ⊗ e

(nd)
d , ns ∈ Z+, s = 1, . . . , d,

where Ω := e
(0)
1 ⊗ · · · ⊗ e

(0)
d , i.e. T =

⊗d
i=1 T (Hi). In this case the operators ãi, i = 1, . . . , d can

be presented as tensor products

ãi =
i−1⊗
j=1

d(µ) ⊗ ai ⊗
d⊗

j=i+1

1,

where d(µ)e(n)
j = µne

(n)
j , n ∈ Z+, j = 1, . . . , d. If we consider the special case µ = 0, we get

the realization of the monotone independent non-commutative random variables constructed by
U. Franz, see [6]

ãi =
i−1⊗
j=1

Pj ⊗ ai ⊗
d⊗

j=i+1

1.
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