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We consider ∗-algebra generated by orthogonal projections with relations of Temperley–Lieb
type. In this article we study all irreducible ∗-representations of this algebra and obtain the
set of values of parameters when these representations exist.

1 Introduction

Temperley–Lieb algebras generated by n projections p1, . . . , pn with relations

pipj = pjpi, |i − j| > 1, pipi±1pi = τpi, τ ∈ R, (1)

appeared in [3, 4] in the context of ice-type models but they also play an important role in the
analysis of subfactors of II1 factor and in the knot theory (see, e.g., [5–7]). Jones proved that the
chain (1) of orthogonal projections in Hilbert space with adding condition involving the trace
can be infinite one if τ ∈ [0; 1/4] ∪

{
1

4 cos2 π
n
|n ≥ 3

}
.

In the present paper we consider ∗-algebra TL�τ,n generated by orthogonal projections p0, . . .,
pn−1 with relations

pipj = 0, |i − j| > 1, (i, j) �= (0, n − 1) and pipi+1pi = τipi, pipi−1pi = τi−1pi. (2)

In [2] we studied such ∗-algebra for τi = τ . For this more general algebra (2) we have found
all irreducible ∗-representations and described the set of values of the parameters when these
representations exist.

2 Description of all irreducible ∗-representations
of algebra TL�τ,n, their existence in depending
on values of parameter �τ

We study ∗-algebra over complex field generated by n (n � 3) orthogonal projections p0, . . . , pn−1

with relations of Temperley–Lieb type or orthogonality between any two projections. In other
words, p2

i = p∗i = pi and any projections pi and pj fulfil condition pipj = 0 or for some 0 <
τi,j < 1 relations pipjpi = τi,jpi and pjpipj = τi,jpj are correct. Such algebra can be described
by a marked graph G with n vertices, where two vertices i, j are joined by a line marked
with τi,j if and only if orthogonal projections pi, pj satisfy relations of Temperley–Lieb type. If
�τ = (τ0, . . . , τn−1) with 0 < τi < 1 is fixed vector we may consider ∗-algebra TL�τ,n described by
a graph (see Fig. 1).

In [1] there were proved that ∗-algebra TL�τ,n has only finite-dimensional irreducible ∗-rep-
resentations, so in the following we consider nontrivial irreducible finite-dimensional ∗-represen-
tations of this algebra and name them simply ‘representations’. If π is a ∗-representation of
algebra TL�τ,n in unitary space H we write Pi for π (pi) . Next theorem give a description of
∗-representations of algebra TL�τ,n.
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Figure 1.

Theorem 1. Let irreducible ∗-representation of algebra TL�τ,n exists in unitary space H. Then
we can find the orthonormal basis of H such that in this basis matrices of operators P0, . . . , Pn−1

are as follows:

P0 = diag (1, 0, . . . , 0) ,

Pi =




0 · · · 0 0 0 0 · · ·
...

. . .
...

...
...

...
...

0 · · · 0 0 0 0 · · ·
0 · · · 0 ti−1

√
ti−1 − t2i−1 0 · · ·

0 · · · 0
√

ti−1 − t2i−1 1 − ti−1 0 · · ·
0 · · · 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·




, i = 1, . . . , n − 2,

where ti−1 = τi−1

1−ti−2
, t0 = τ0 and the number of zeroes on the top of diagonal is equal to i − 1.

Pn−1 =




τn−1 b1 · · · bn−3 λ µ

b1
b21

τn−1
· · · b1bn−3

τn−1

b1λ
τn−1

b1µ
τn−1

...
...

. . .
...

...
...

bn−3
b1bn−3

τn−1
· · · b2n−3

τn−1

bn−3λ
τn−1

bn−3µ
τn−1

λ̄ b1λ̄
τn−1

· · · bn−3λ̄
τn−1

|λ|2
τn−1

λ̄µ
τn−1

µ b1µ
τn−1

· · · bn−3µ
τn−1

µλ
τn−1

µ2

τn−1




,

where bi = (−1)i τn−1

i−1∏
j=0

tj√
tj−t2j

. Entry λ ∈ C that ‘number’ the representations is such that

∣∣∣∣tn−3bn−3 + λ
√

tn−3 − t2n−3

∣∣∣∣
2

= τn−2τn−1tn−3

and µ =

√
τn−1 − τ2

n−1 −
n−3∑
j=1

b2
j − |λ|2.

Remark 1. If parameter �τ is such that tn−3 = 1 the matrix of operator Pn−1 differs from the
one pointed out in the Theorem 1, more precisely, first n− 2-nd rows and columns are the same
but n − 1-st (or even n − 1-st and n-th) row and column are absent, bn−3 satisfies additional

condition b2
n−3 = τn−2τn−1 and µ2 = τn−1 − τ2

n−1 −
n−3∑
i=1

b2
i ,

(
τn−1 − τ2

n−1 −
n−3∑
i=1

b2
i = 0

)
.
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Remark 2. The rank of all orthogonal projections Pi is 1 and dimension of irreducible ∗-rep-
resentation may be equal to n, n − 1, or to n − 2.

Remark 3. If parameter �τ is fixed then different permissible λ’s define inequivalent irreducible
∗-representations. So, we may say that each irreducible ∗-representation of algebra TL�τ,n, is
given by the number λ.

Now our goal is to produce the set of values of parameter �τ for that the ∗-representations
exist. Let F

(k)
i , i ≥ 0, 0 ≤ k ≤ n − 1 be the collection of numbers given by recurrent formulas

F
(k)
0 = F

(k)
1 = 1, F

(k)
i+2 = F

(k)
i+1 − τi+kF

(k)
i .

Proposition 1. The irreducible ∗-representations of algebra TL�τ,n, exist if and only if one of
following two cases takes place:

1) F
(0)
i > 0, i = 2, . . . , n − 1 and at least one of the following inequalities is true∣∣∣(−1)n √τ0 · · · τn−3τn−1 ±√

τn−2F
(0)
n−2

∣∣∣√
F

(0)
n−1

≤
√

(1 − τn−1) F
(0)
n−2 − τ0τn−1F

(2)
n−4,

2) F
(0)
i > 0, i = 2, . . . , n − 2, F

(0)
n−1 = 0, F

(0)
n−2 =

√
τ0···τn−3τn−1

τn−2
and

1 − τn−1 − τ0τn−1
F

(2)
n−4

F
(0)
n−2

≥ 0.

Note that for n = 3 the expressions in the proposition 1 will be correct if P
(2)
−1 := 0.
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