On *-Representations of One Deformed Quotient of Affine Temperley-Lieb Algebra

Nataly POPOVA

Institute of Mathematics of NAS Ukraine, 3 Tereshchenkivs ’ka Str., 01601 Kyiv-4, Ukraine E-mail: popova_n@yahoo.com

Abstract

We consider *-algebra generated by orthogonal projections with relations of Temperley-Lieb type. In this article we study all irreducible $*$-representations of this algebra and obtain the set of values of parameters when these representations exist.

1 Introduction

Temperley-Lieb algebras generated by n projections p_{1}, \ldots, p_{n} with relations

$$
\begin{equation*}
p_{i} p_{j}=p_{j} p_{i}, \quad|i-j|>1, \quad p_{i} p_{i \pm 1} p_{i}=\tau p_{i}, \quad \tau \in \mathbb{R}, \tag{1}
\end{equation*}
$$

appeared in $[3,4]$ in the context of ice-type models but they also play an important role in the analysis of subfactors of II_{1} factor and in the knot theory (see, e.g., [5-7]). Jones proved that the chain (1) of orthogonal projections in Hilbert space with adding condition involving the trace can be infinite one if $\tau \in[0 ; 1 / 4] \cup\left\{\left.\frac{1}{4 \cos ^{2} \frac{\pi}{n}} \right\rvert\, n \geq 3\right\}$.

In the present paper we consider $*$-algebra $T L_{\vec{\tau}, n}$ generated by orthogonal projections p_{0}, \ldots, p_{n-1} with relations

$$
\begin{equation*}
p_{i} p_{j}=0, \quad|i-j|>1, \quad(i, j) \neq(0, n-1) \quad \text { and } \quad p_{i} p_{\overline{i+1}} p_{i}=\tau_{i} p_{i}, \quad p_{i} p_{\overline{i-1}} p_{i}=\tau_{\overline{\overline{i-1}}} p_{i} . \tag{2}
\end{equation*}
$$

In [2] we studied such $*$-algebra for $\tau_{i}=\tau$. For this more general algebra (2) we have found all irreducible *-representations and described the set of values of the parameters when these representations exist.

2 Description of all irreducible *-representations of algebra $T L_{\vec{\tau}, n}$, their existence in depending on values of parameter $\overrightarrow{\boldsymbol{\tau}}$

We study $*$-algebra over complex field generated by $n(n \geqslant 3)$ orthogonal projections p_{0}, \ldots, p_{n-1} with relations of Temperley-Lieb type or orthogonality between any two projections. In other words, $p_{i}^{2}=p_{i}^{*}=p_{i}$ and any projections p_{i} and p_{j} fulfil condition $p_{i} p_{j}=0$ or for some $0<$ $\tau_{i, j}<1$ relations $p_{i} p_{j} p_{i}=\tau_{i, j} p_{i}$ and $p_{j} p_{i} p_{j}=\tau_{i, j} p_{j}$ are correct. Such algebra can be described by a marked graph G with n vertices, where two vertices i, j are joined by a line marked with $\tau_{i, j}$ if and only if orthogonal projections p_{i}, p_{j} satisfy relations of Temperley-Lieb type. If $\vec{\tau}=\left(\tau_{0}, \ldots, \tau_{n-1}\right)$ with $0<\tau_{i}<1$ is fixed vector we may consider $*$-algebra $T L_{\vec{\tau}, n}$ described by a graph (see Fig. 1).

In [1] there were proved that $*$-algebra $T L_{\vec{\tau}, n}$ has only finite-dimensional irreducible $*$-representations, so in the following we consider nontrivial irreducible finite-dimensional $*$-representations of this algebra and name them simply 'representations'. If π is a $*$-representation of algebra $T L_{\vec{\tau}, n}$ in unitary space H we write P_{i} for $\pi\left(p_{i}\right)$. Next theorem give a description of *-representations of algebra $T L_{\vec{\tau}, n}$.

Figure 1.
Theorem 1. Let irreducible *-representation of algebra $T L_{\vec{\tau}, n}$ exists in unitary space H. Then we can find the orthonormal basis of H such that in this basis matrices of operators P_{0}, \ldots, P_{n-1} are as follows:

$$
\begin{aligned}
P_{0} & =\operatorname{diag}(1,0, \ldots, 0), \\
P_{i} & =\left(\begin{array}{ccccccc}
0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
0 & \cdots & 0 & t_{i-1} & \sqrt{t_{i-1}-t_{i-1}^{2}} & 0 & \cdots \\
0 & \cdots & 0 & \sqrt{t_{i-1}-t_{i-1}^{2}} & 1-t_{i-1} & 0 & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right), \quad i=1, \ldots, n-2,
\end{aligned}
$$

where $t_{i-1}=\frac{\tau_{i-1}}{1-t_{i-2}}, t_{0}=\tau_{0}$ and the number of zeroes on the top of diagonal is equal to $i-1$.

$$
P_{n-1}=\left(\begin{array}{cccccc}
\tau_{n-1} & b_{1} & \cdots & b_{n-3} & \lambda & \mu \\
b_{1} & \frac{b_{1}^{2}}{\tau_{n-1}} & \cdots & \frac{b_{1} b_{n-3}}{\tau_{n-1}} & \frac{b_{1} \lambda}{\tau_{n-1}} & \frac{b_{1} \mu}{\tau_{n-1}} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
b_{n-3} & \frac{b_{1} b_{n-3}}{\tau_{n-1}} & \cdots & \frac{b_{n-3}^{2}}{\tau_{n-1}} & \frac{b_{n-3 \lambda}}{\tau_{n}-1} & \frac{b_{n-3} \mu}{\tau_{n-1}} \\
\bar{\lambda} & \frac{b_{1} \lambda}{\tau_{n-1}} & \cdots & \frac{b_{n-3}}{\tau_{n-1}} & \frac{\left.\lambda\right|^{2}}{\tau_{n-1}} & \frac{\lambda \mu}{\tau_{n-1}} \\
\mu & \frac{b_{1} \mu}{\tau_{n-1}} & \cdots & \frac{b_{n-3}}{\tau_{n-1}} & \frac{\mu \lambda}{\tau_{n-1}} & \frac{\mu^{2}}{\tau_{n-1}}
\end{array}\right),
$$

where $b_{i}=(-1)^{i} \tau_{n-1} \prod_{j=0}^{i-1} \frac{t_{j}}{\sqrt{t_{j}-t_{j}^{2}}}$. Entry $\lambda \in \mathbb{C}$ that 'number' the representations is such that

$$
\left|t_{n-3} b_{n-3}+\lambda \sqrt{t_{n-3}-t_{n-3}^{2}}\right|^{2}=\tau_{n-2} \tau_{n-1} t_{n-3}
$$

and $\mu=\sqrt{\tau_{n-1}-\tau_{n-1}^{2}-\sum_{j=1}^{n-3} b_{j}^{2}-|\lambda|^{2}}$.
Remark 1. If parameter $\vec{\tau}$ is such that $t_{n-3}=1$ the matrix of operator P_{n-1} differs from the one pointed out in the Theorem 1, more precisely, first $n-2$-nd rows and columns are the same but $n-1$-st (or even $n-1$-st and n-th) row and column are absent, b_{n-3} satisfies additional condition $b_{n-3}^{2}=\tau_{n-2} \tau_{n-1}$ and $\mu^{2}=\tau_{n-1}-\tau_{n-1}^{2}-\sum_{i=1}^{n-3} b_{i}^{2},\left(\tau_{n-1}-\tau_{n-1}^{2}-\sum_{i=1}^{n-3} b_{i}^{2}=0\right)$.

Remark 2. The rank of all orthogonal projections P_{i} is 1 and dimension of irreducible $*$-representation may be equal to $n, n-1$, or to $n-2$.

Remark 3. If parameter $\vec{\tau}$ is fixed then different permissible λ 's define inequivalent irreducible *-representations. So, we may say that each irreducible *-representation of algebra $T L_{\vec{\tau}, n}$, is given by the number λ.

Now our goal is to produce the set of values of parameter $\vec{\tau}$ for that the $*$-representations exist. Let $F_{i}^{(k)}, i \geq 0,0 \leq k \leq n-1$ be the collection of numbers given by recurrent formulas

$$
F_{0}^{(k)}=F_{1}^{(k)}=1, \quad F_{i+2}^{(k)}=F_{i+1}^{(k)}-\tau_{\overline{i+k}} F_{i}^{(k)} .
$$

Proposition 1. The irreducible *-representations of algebra $T L_{\vec{\tau}, n}$, exist if and only if one of following two cases takes place:

1) $F_{i}^{(0)}>0, i=2, \ldots, n-1$ and at least one of the following inequalities is true

$$
\frac{\left|(-1)^{n} \sqrt{\tau_{0} \cdots \tau_{n-3} \tau_{n-1}} \pm \sqrt{\tau_{n-2}} F_{n-2}^{(0)}\right|}{\sqrt{F_{n-1}^{(0)}}} \leq \sqrt{\left(1-\tau_{n-1}\right) F_{n-2}^{(0)}-\tau_{0} \tau_{n-1} F_{n-4}^{(2)}},
$$

2) $F_{i}^{(0)}>0, i=2, \ldots, n-2, F_{n-1}^{(0)}=0, F_{n-2}^{(0)}=\sqrt{\frac{\tau_{0} \cdots \tau_{n-3} \tau_{n-1}}{\tau_{n-2}}}$ and

$$
1-\tau_{n-1}-\tau_{0} \tau_{n-1} \frac{F_{n-4}^{(2)}}{F_{n-2}^{(0)}} \geq 0 .
$$

Note that for $n=3$ the expressions in the proposition 1 will be correct if $P_{-1}^{(2)}:=0$.

Acknowledgements

The author is truly grateful to Prof. Yu.S. Samoilenko and to M. Vlasenko for fruitful discussions and advice.
[1] Popova N. and Vlasenko M., On representations of sets of projections with fixed angles between them, Ukr. Math. J., to appear (in Russian).
[2] Popova N., On one algebra of Temperley-Lieb type, in Proceedings of Fourth International Conference "Symmetry in Nonlinear Mathematical Physics" (9-15 July, 2001, Kyiv), Editors A.G. Nikitin, V.M. Boyko and R.O. Popovych, Kyiv, Insitute of Mathematics, 2002, V.43, Part 2, 486-489.
[3] Temperley H. and Lieb E., Relations between the 'percolation' and 'colouring' problem and other graphtheoretical problems associated with regular plane lattices: some exact results for 'percolation' problem, J. Proc. Roy. Soc. (London), 1971, V.322, 251-280.
[4] Baxter R.J., Exactly solved models in statistical mechanics, London, Acad. Press., 1982.
[5] Jones V., Index for subfactors J. Invent. Math., 1983, V.72, 1-25.
[6] Jones V., Hecke algebra representations of braid groups and link polynomials, Annals of Math., 1987, V.126, 335-388.
[7] Wenzl H., On sequences of projections C.R. Math. Rep. Acad. Sci. Canada, 1987, V.9, N 1, 5-9.

