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Modified Hypergeometric Equations
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After recalling what the Markoff theory is, this article summarizes some links which exist
with the group GL(2, Z) of 2 × 2 matrices with integer coefficients and determinant ±1
and with its subgroups SL(2, Z) and the triangle group T3. Then we consider the relation
with conformal punctured tori. The main part of the article is about the monodromy
representation of the Poincaré group of such a torus. We give the corresponding solution of
the associated Riemann–Hilbert problem and the corresponding differential operator whose
spectral analysis remains to be done. We conclude quoting the Hilbert’s 22nd problem and
some information about the accessory parameter problem.

1 Introduction

For a real quadratic form f(x, y) = ax2 + bxy + cy2 ∈ R[x, y], the issue of knowing the minimal
value of |f(x, y)| when x and y are non-zero integers is classical. When f(x, y) is a definite form,
i.e. ∆(f) = b2 − 4ac < 0, the problem was solved by J.L. Lagrange and C. Hermite [18]:

C(f) =
inf(x,y)∈Z2/{(0,0)} |f(x, y)|√

|∆(f)|
≤ 1√

3
= C(x2 + xy + y2).

It has been shown [3, p. 33] that for any ρ ∈]0, (1/
√

3)], we can find f(x, y) ∈ R[x, y] a quadratic
form verifying ρ = C(f). When f(x, y) is a indefinite form, i.e. ∆(f) = b2−4ac > 0, A. Korkine
and G. Zolotareff [23] demonstrated:

C(f) ≤ 1√
5

= C(x2 − xy − y2) = C(f0),

an isolated value giving also C(f) ≤ 1/
√

8 for any other form f not GL(2, Z)-equivalent to f0.
Trying to understand this phenomenon motivated A.A. Markoff to write [27]. He described an
infinity of values C(fi)i∈N comprised between (1/

√
5) and (1/3) and having the same properties

as C(f0). These values are isolated and convergent towards (1/3). They can be built thanks to
the tree of solutions of the Diophantine equation, so-called Markoff equation [9]:

m2 + m2
1 + m2

2 = 3mm1m2.

For values C(f) less than (1/3), the author has shown that more general diophantine equations
give an insight, sometimes with theories similar to the Markoff one [32], but with some complica-
tion. Moreover, a geometrical interpretation of such results has been found, similar to what was
done by H. Cohn [8] for the classical Markoff theory. The general situation can be understood
by the Teichmüller theory on the topological punctured torus T • (see for example [20]). This
topological object is quite frequent in physical problems, for example when linked to the K.A.M.
theorem [1], and some work has been done after the observation that the Markoff theory could
be useful in order to understand the behavior of some oscillators [33]. It was possible to realize
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that two types of geometric punctured tori exist, we called them hyperbolic and parabolic. The
Markoff theory is then linked to the parabolic case, and geometrically to special fuchsian groups,
the Fricke groups Γ as defined in [37]:

(1): Γ is isomorphic to a free group with two generators F2 = Z ∗ Z.
(2): The Riemann surface H/Γ (where H is the Poincaré half-plane) is homeomorphic to

a punctured torus.
The closed geodesics on such Riemann surfaces are linked to indefinite quadratic forms f

and to the associated Markoff constant C(f), which can be seen as shorter length of such
geodesics [42]. The Markoff theory gives an explanation [38] to the quantification which appears
when changing from such a geodesic to another: no continuous deformation is possible on the
torus because of the puncture. Such remarks are the basis of the interest of physicists in this
subject [17]. In another direction, it is known that the Markoff theory has links with the study
of exceptional bundles and helices of the projective plane P2(C) (see [36, 30, 31, 14, 15, 11]), and
also with the spectrum of Hermitian operators [22], and this is also important for physics [39].
A project that we had a long time ago was to build a common interpretation of such remarks in
order to get the set of all Markoff constants of indefinite quadratic forms, the Markoff spectrum,
as the spectrum of some operator on a Hilbert space. The reason for it is that the Markoff
spectrum seems like the spectrum of some operators. It has a discrete part from (1/

√
5) to (1/3),

then a Cantorian part from (1/3) to the Freiman number β, which is:

β−1 = 4 +
253589820 + 283748

√
462

491993569
.

From β to 0 the spectrum is continuous, any real number is a Markoff constant [9]. The present
article gives hints of the possibility to implement such a project, building a possible operator to
consider.

Looking at the link with the Fuchsian groups that we mentioned, the Markoff theory can
be described [32] thanks to the two following matrices generating in SL(2, Z) a free group
isomorphic to F2 which is [SL(2, Z), SL(2, Z)]:

A0 =
[

1 1
1 2

]
, B0 =

[
1 −1
−1 2

]
.

These matrices give rise to a representation ρ : Aut(F2) −→ GL(2, Z), and we have described
the algebraic importance of this situation in [32]. In this article, the main goal is to give a differ-
ential equation whose former representation ρ is the monodromy representation. With such a con-
struction, we hope to understand the Lamé equations appearing for the accessory parameters of
punctured tori [21,34]. Such equations have similarities with hypergeometric equations and also
with some Schrödinger equations whose monodromy group has recently been studied [44]. Also
we could soon build an Hamiltonian interpretation in the spirit of L.D. Fadeev [12] and others
enabling us to realize our above mentionned project.

2 Considering the triangle group

The Markoff equation gives a complete tree of integer solutions thanks to the solution (1, 1, 1)
and to the three transformations which are involutions:

X : (m, m1, m2) �−→ ((3m1m2 − m, m1, m2),
Y : (m, m1, m2) �−→ (m, 3mm2 − m1, m2),
Z : (m, m1, m2) �−→ (m, m1, 3mm1 − m2).
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The involutions X, Y et Z, give rise to the triangle group T3 = C2 ∗C2 ∗C2, which is the free
product of three cyclic groups C2 with two elements. In [32], we showed how this group T3 is
linked to the group of 2× 2 matrices GL(2, Z). For this we used an abelianisation morphism π′

from the automorphism group Aut(F2) to GL(2, Z), and two matrices generating the dihedral
group D6 with 12 elements inside GL(2, Z):

π′(t) =
[

1 1
−1 0

]
, π′(o) =

[
0 −1
−1 0

]
.

We also defined:

π′(X) =
[

1 0
−2 −1

]
, π′(Y ) =

[
−1 −2
0 1

]
, π′(Z) =

[
1 0
0 −1

]
.

The group T3 acts in GL(2, Z) defining with ch = ch(X, Y, Z) ∈ T3:

ch(π′(X), π′(Y ), π′(Z)) = π′(ch(X, Y, Z)) ∈ π′(T3).

It gives a ternary decomposition in GL(2, Z) using the triangle group (see [32] for demonstration):

Proposition 1. Every element V ∈ GL(2, Z) has a unique decomposition

π′(o)hπ′(t)kch(π′(X), π′(Y ), π′(Z)), where h = 0, 1; k = 0, 1, . . . , 5; ch ∈ T3.

The elements of π′(T3) are characterized by the conditions h = 0 et k = 0. The group π′(T3)
is not normal inside GL(2, Z). It is isomorphic by π′ to the group T3. The elements of the
group D6, not normal in GL(2, Z), are characterized by the condition ch(π′(X), π′(Y ), π′(Z)) =
12.

The group D6 introduces two equivalence relations in GL(2, Z), which are defined with
V1 �D6 V2 ⇔ V1V

−1
2 ∈ D6 and V1 D6� V2 ⇔ V −1

1 V2 ∈ D6. The quotients
GL(2, Z)/�D6 and GL(2, Z)/D6� are equipotent, but different because D6 is not a normal
subgroup of GL(2, Z). Each V ∈ GL(2, Z) defines a unique ch(π′(X), π′(Y ), π′(Z)) ∈ π′(T3),
such that V �D6 ch(π′(X), π′(Y ), π′(Z)). Hence, we get a description of the complete tree of
the Markoff theory:

Proposition 2. The group T3 is equipotent to the quotient (right or left) of the group GL(2, Z)
by its non-normal subgroup D6. It is an homogeneous GL(2, Z)-space. But also it can be
considered a subgroup of GL(2, Z), thanks to the former proposition.

We find a decomposition using the free group F2 	 [SL(2, Z), SL(2, Z)]:

Proposition 3. Any element V ∈ GL(2, Z) has a unique decomposition

±W (A0, B0)OhWk(S, T ),
W (A0, B0) ∈ F2 	 [SL(2, Z), SL(2, Z)], h ∈ {0, 1},
Wk(S, T ) ∈ {12, S, ST, STS, STST, STSTS} with k = 0, 1, . . . , 5.

The elements of the normal subgroup SL(2, Z) in GL(2, Z) are characterized by h = 0.

For the last proposition, we defined in GL(2, Z):

S =
[

0 −1
1 0

]
, T =

[
1 1
0 1

]
, O =

[
−1 0
0 1

]
.
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The words W (A0, B0) are written in a multiplicative way with two generators A0 = [(TS)−1, S−1]
and B0 = [S−1, (TS)−2] of F2, thanks to [26, p. 97–98]. In fact, we have a presentation with
two generators T and I = OS (see [2]):

GL(2, Z) = 〈I, T−1 | I2 = ([T−1, I]T−1)4 = ([T−1, I]T−1I)2 = 12〉.

The subgroup π′(T3) is generated by π′(X0) = T−1IOT−1IOIT−1B−1
0 , π′(Y0) = IOIOA−1

0 TS,
π′(Z0) = IS. Moreover [2], the triangle group T3 	 π′(T3) is isomorphic to the projective

PGL(2, Z) = 〈I, T
−1 | I

2 = ([T−1
, I]T−1)2 = ([T−1

, I]T−1
I)2 = 1〉.

We can verify that F2 	 [PSL(2, Z), PSL(2, Z)] has an index 2 in this last group where we
have, with C3 the cyclic group containing three elements, V1 = [I, T

−1] and V2 = [I, T ]:

[PGL(2, Z), PGL(2, Z)] = 〈V1, V2 | V1
3 = V2

3 = 1〉 	 C3 ∗ C3.

3 Conformal punctured tori

The conformal punctured tori are easily built with the Poincaré H half-plane. We use four
geodesics of H referred to as αs, sβ, βp, pα, not crossing each other, and with α, s, β, p,
on the border of H. Any torus is given by transformations tA : αp → sβ, tB : αs → pβ.
These transformations being given by matrices A and B of SL(2, R) acting on H as conformal
transformations, we can compute with α < 0, β > 0, c �= 0, c′ �= 0:

A =
[

cβ −cαβ
c (1/cβ) − cα

]
, where c �= 0,

B =
[

c′α −c′αβ
c′ (1/c′α) − c′β

]
, where c′ �= 0,

A(α) = s, A(p) = β, B(β) = s, B(p) = α.

In SL(2, R), the two matrices A and B generate G = gp(A, B) and define a fuchsian group acting
on H, where P is the canonical projection from SL(2, R) to PSL(2, R) = SL(2, R)/{±12}:

Γ = PG = G/G ∩ {±12} = gp(P (A), P (B)).

The Markoff theory with A = A0, B = B0 is given by c = β = −c′ = −α = 1. For more general
cases, we consider the commutator L = [A, B] = ABA−1B−1. It contents all the necessary
information concerning the associated punctured torus because

L(s) = ABA−1B−1(s) = ABA−1(β) = AB(p) = A(α) = s.

Also tr (L) = tr ([A, B]) ≤ −2 and we get the condition due to Fricke:

tr (L) + 2 = tr (A)2 + tr (B)2 + tr (AB)2 − tr (A) tr (B) tr (AB) ≤ 0.

The parabolic case defined by the condition tr (L) = −2 gives the Markoff equation again, thanks
to a factor 3 in the traces which are related by:

tr (A)2 + tr (B)2 + tr (AB)2 = tr (A) tr (B) tr (AB).

We now have a parametric representation with (λ, µ) ∈ R
2\{(0, 0)}, also due to Fricke:

tr (A) =
1 + λ2 + µ2

µ
, tr (B) =

1 + λ2 + µ2

λ
, tr (AB) =

1 + λ2 + µ2

λµ
,

The Markoff theory is obtained with λ = µ = 1. Easily:
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Proposition 4. Let (A, B) and (A′, B′) generate Γ = Pgp(A, B) and Γ′ = Pgp(A′, B′), two
Fricke groups associated to conformal punctured tori, we then have the following equivalence:

1. (A, B) et (A′, B′) are equivalent thanks to an interior automorphism of GL(2, R):

A = DA′D−1, B = DB′D−1, where D ∈ GL(2, R).

2. The following two triples are equal:

Π(A, B) = (tr (B−1), tr (A), tr (B−1A−1)), Π(A′, B′) = (tr (B′−1), tr (A′), tr (B′−1A′−1)).

3. The couples (A, B) and (A′, B′) give the same parameters λ, µ ∈ R
+

λ = (tr (A)/tr (AB)) = (tr (A′)/tr (A′B′)), µ = (tr (B)/tr (AB)) = (tr (B′)/tr (A′B′)).

It is easy to develop a theory of reduction for parabolic tori and to find a link with quaternions.
It gives:

Proposition 5. Any conformal equivalence from a parabolic punctured torus T •
Γ to itself given

by an interior automorphism of GL(2, R) is equal to identity.

The study of the Laplacian on such surfaces is not so easy [43], though important for
physics [29]. The parabolic punctured tori are of the form H/〈A, B, L | [A, B]L−1 = 1〉. Now if
T • is the associated topological punctured torus, the conformal structure built on it thanks to
A and B is only given [40] by a representation ρ : π1(T •, ∗) → SL(2, R), where π1(T •, ∗) 	 F2

is the Poincaré group of the punctured torus. Introducing the space of all the deformations
R = R(π1(T •, ∗), PSL(2, R)), and the morphism ρ = P ◦ ρ, we find by this construction all
the possible parabolic conformal punctured tori H/ρ(π1(T •, ∗)). This approach corresponds to
the Teichmüller theory, here specialized to punctured tori. Replacing PSL(2, R) by PSL(2, C),
under the former proposition 4, we also have a link with the variety of representations [25] of
the group of Poincaré π1(T •, ∗):

ρ ∈ R(π1(T •, ∗), PSL(2, C)) → (tr ρ(g1), tr ρ(g2), tr ρ(g3)) ∈ C
3.

4 Monodromy

A monodromy representation of the group π1(T •, ∗) is a morphism ρ : π1(T •, ∗) −→ GL(n, C).
Its image is the group of monodromy. Such representations are classified with interior auto-
morphisms of GL(n, C). They are considered in Fuchs differential equations (see [46, p. 75]
and [16,24]) as symmetries letting such an equation invariant:

dnf

dzn
+ a1(z)

dn−1f

dzn−1
+ · · · + an(z)f = 0.

With n = 2 and π1(T •, ∗) 	 F2 generated by A et B, the monodromy representations are
completely described in [46, p. 80]. The irreducible ones are given thanks to an interior auto-
morphism of GL(2, C) with expressions

ρ(A) =
[

λ1 1
0 λ2

]
, ρ(B) =

[
µ1 0

(ν1 + ν2) − (λ1µ1 + λ2µ2) µ2

]
, λiµj �= νk.

They are uniquely determined by the couples (λ1, λ2), (µ1, µ2), (ν1, ν2) of eigenvalues of A, B
and AB, with the former constraints. Diagonalizing the matrices A0 et B0 of the Markoff theory,
we can consider:

ρ(A0) =

[
3−√

5
2 1
0 3+

√
5

2

]
, ρ(B0) =

[
3−√

5
2 0
−4 3+

√
5

2

]
.
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We now give a solution of the corresponding problem of Riemann–Hilbert, which consists in
finding a differential equation having ρ as a monodromy representation. For this we use [46,
theorem 4.3.2, p. 85] in order to compute the associated Riemann scheme. This way we find the
following fuchsian equation (modified hypergeometric), given with σ3 = 1−τ3 = (log(3±√

5
2 ))/2iπ

under the following form:

z(1 − z)
d2f

dz2
+ (1 − 2z)

df

dz
− (σ3τ3)f =

log(3+
√

5
2 ) log(3−√

5
2 )

4π2z(1 − z)
f.

This equation which constitutes the main innovation of this article can be studied with the
methods of [6]. Also, we get a differential operator whose spectral analysis is now to be made:

L = D2 +
(1 − 2z)
z(1 − z)

D −
(σ3τ3)4π2z(1 − z) + log

(
3+

√
5

2

)
log

(
3−√

5
2

)
4π2z2(1 − z)2

.

The comparison of the corresponding spectrum with the Markoff spectrum must now be made
and it will be detailed in a future article. In fact, there are two possibilities for L due to the
chosen value of σ3 corresponding to the geometrical phenomenon of Schröder pairs for the same
punctured torus, and showing that the two possibilities are linked by an easy transformation.
A Hamiltonian interpretation could be important in the present case. It is effective for very
important physical equation appearing in Physics (Lamé – that is to say periodical Schrödinger
in one dimension [13], sine-Gordon, nonlinear Schrödinger, Korteweg–de Vries, . . . , solitons)
admitting a Hamiltonian representation, with states in an Hilbert space. It could give a solution
for our above project.

5 Conclusion

The comparison with the hypergeometrical approach of Harvey Cohn [7] of the Markoff theory
needs to be made. He discovered the link with the following relation between the classical
modular function J automorphic for PSL(2, Z) and the Weierstrass function ℘:

1 − J(τ) = ℘′2(z) = 4℘3(z) + 1.

He explained the link with triples of matrices (A, B, C) associated to the Markoff theory and
gave the opportunity to look at a formula assuming an hexagonal symmetry

dz = const × dJ

J2/3(J − 1)1/2
.

It does not seem to the author of this article that the way between these two formulas has
been detailed. The problem is known to be linked to an accessory parameter [5, 21] verifying
a Lamé differential equation [47, p. 110]. This question also has a link with the Hilbert’s 22nd

problem [19]. This famous problem is not yet completely solved [41], even if the Lamé equations
are much more studied today [44]. We suggest to get insight in this problem for punctured tori
through the former developments. Considering the first of the last two equations and differenti-
ating, we get the former differential relations:

−J ′(τ)dτ = 12℘2(z)℘
′
(z)dz, ℘

′
(z) = (1 − J(τ))1/2, ℘2(z) = (J(τ)/4)2/3.

The difficulties for integrating the differential relation between dz and dJ are known [45, p. 85–
90], together with the links with the hypergeometric function F (a, b, c, z) solution of the diffe-
rential equation with two singularities z = 0 and z = 1, where z ∈ C:

E(a, b, c) : z(1 − z)
d2F

dx2
+ (c − (a + b + 1)z)

dF

dx
− abF = 0.



Modified Hypergeometric Equations Arising from the Markoff Theory 1167

When the parameters a, b, c, are real and c, c − a − b, a − b, non integers, we find the Schwarz
application on D = C\{] −∞, 0] ∪ [1,∞[}:

Sch : J ∈ D −→ (F (a, b, c, J) : J1−cF (a + 1 − c, b + 1 − c, 2 − c, J)) ∈ P1(C).

The expression of H. Cohn between dz et dJ leads to consider the case a = (1/3), b = 0, c = (5/6)
giving |1 − c| = (1/6), |c − a − b| = (1/2), |a − b| = (1/3). These values give confirmation that
we are in an euclidian hexagonal crystal case. Also we get the known link with the work of
R. Dedekind [10] and his function η. Indeed, we get dz = w(τ)2dτ with:

w(τ) = const
J ′(τ)1/2

J(τ)1/3(1 − J(τ))1/4
.

A new hypergeometric equation E((1/12), (1/12), (2/3)) appears between w and J . The
function η is a square root of w (see [4, p.135] or [28, p.180]), which is known to precisely verify:

η(τ)24 =
1

(48π2)3
J ′(τ)6

J(τ)4(1 − J(τ))3
.

The function η has indeed a tight link with the Markoff equation [35].
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