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An orbit function is the contribution to an irreducible character of a compact semisimple
Lie group G of rank n from one of its Weyl group orbits. Properties of such functions will be
described for compact simple Lie groups of all types. In particular, products of the functions
decompose into their sums, the functions are periodic on copies of the fundamental region F
of G, they are solutions of corresponding Laplace equation in n dimensions, satisfying Neu-
mann condition at the boundary of F , . . . Uncommon applications to image enhancements
and a new approach to n-dimensional data compression are shown, when orbit functions are
evaluated at suitable sets of conjugacy classes of elements of finite order in G.

1 Introduction

In this talk I will make some general claims, which are to be justified elsewhere [1]. Here the
claims are illustrated by examples. More precisely, my aim is twofold: First I want to introduce
some mathematical background to [2–4], and then I want to show that the orbit functions, the
main subject here, are eigenfunctions of corresponding Laplace operators in R

n and that they
satisfy Neumann condition at the boundary of the fundamental region of the corresponding
compact semisimple Lie group.

An orbit function is the contribution to the character of an irreducible representation from a
single Weyl group orbit [5–9]. Thus in the term ‘orbit function of the compact semisimple Lie
group G’ the adjective ‘orbit’ refers to the orbit of the Weyl group W of G rather than to the
orbit of G. The term was introduced in [10].

Generally one may argue in favor of the fact that a large family of functions, defined on
conjugacy classes of any compact semisimple Lie group G, called ‘orbit functions’, belong among
the special functions of mathematical physics. The family is quite rich in the sense that it
contains not only a basis of the space of class functions on G, but it contains such bases for
semisimple Lie groups of all types and ranks.

Although there is no generally accepted definition of special function [11–13], most of the
practitioners would probably agree that there are two related requirements which need to be
satisfied before a family of functions would be called special.

Firstly, the functions should find an extensive use in some part of science and engineering.
Secondly, the functions should have some ‘nice’ mathematical properties. The later often means
that they should form a basis in a functional space with some kind of orthogonality property,
which almost always implies that they are solutions of a meaningful differential equations, and
that products of two functions should simply decompose into the sums of them. In most cases
it is assured by the presence of a group underlying the special functions.

So far a claim of practical applicability of orbit functions, would find only a feeble justification,
and that only in the work related to us in some way and dealing with ‘abstract’ although rather
challenging problems [10,14–17].
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Actual motivation for this article is the recent recognition of the fact that the orbit functions
are indispensable for a vast generalization of the discrete cosine transform [2–4], which turned
up to be extremely useful in recent years [18]. In addition, it appears that it is difficult to
overestimate the future role of orbit functions in some applications to image enhancements
and/or requiring data compression [2–4].

The goal in here is to bring together diverse facts about orbit functions, many of which are
not found in the literature, although they often are straightforward consequences of known facts.
In general, for a given compact simple Lie group G of rank n, most of the properties of orbit
functions, which are described in this paper, are implications of properties of either the orbits
of the Weyl group, or of the irreducible characters [5–9,11].

Only examples of dimension 2 and 3 are shown here because they are likely to be used more
often. Hopefully they can be understood without general arguments by directly verifying their
properties through explicit calculation. Nevertheless, since our conclusions are to be general
as to the type of the simple Lie group G, it is imperative to profit from the uniformity of the
pertinent parts of Lie theory: Many general facts of the theory are recalled without explanation
and with only a few references to the literature.

2 Preliminaries

We are interested in complex valued functions f(g) on any semisimple compact Lie group G,
i.e. g ∈ G, which are constant on the conjugacy classes of G (called class functions)

f(g) = f
(
hgh−1

)
for all g, h ∈ G.

Suppose that a maximal torus T ⊂ G has been chosen and fixed. Every element of G has
conjugates in T . One can choose in T a region F̃ in which every conjugacy class of elements
of G is represented by precisely one element of G. For any group, F̃ would be called the
fundamental region. In Lie theory it is conventional to call the fundamental region F of G, the
region where the parameters x of the elements g(x) ∈ F̃ are found in a standard parametrization
of G. Thus for a group of rank n, the parameters of g(x) are components of a vector x ∈ R

n.
A well known basis in the space of class functions on G consists of the characters χΛ(g(x)), of

finite dimensional irreducible representations Λ of G. To simplify the notation, we write χ(Λ, x)
for χΛ(g(x)). A standard problem of Fourier analysis on G is to find the coefficients of the
expansion of a given function f(x) into the series of irreducible characters,

f(x) =
∑
Λ

CΛχ(Λ, x), x ∈ F. (1)

In this talk I am interested in the properties of the orbit functions Ω(d, x), which form another
basis in the functional space spanned by the irreducible characters.

f(x) =
∑

d

Dd Ω(d, x), x ∈ F, (2)

where the summation extends over the dominant weights d of G.
Orbit functions are closely related to characters χ(Λ, x) of G. Let Λ be the highest weight

labelling an irreducible representation of G of finite dimension, and let DV (Λ) be the set of its
distinct dominant weights in the weight system of Λ. Then

χ(Λ, x) =
∑

d∈DV (Λ)

cΛ,dΩ(d, x). (3)
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Here the coefficients cΛ,d ∈ N are the multiplicities of the dominant weights d in the weight
system of the representation Λ. Hence the sum in (3) is finite.

As one of the reasons, why characters are rarely used in extensive applications, one may bring
forward the need to know the multiplicities cΛ,d, and the fact that the larger a representation Λ is,
the larger is the sum (3). The multiplicities are calculated using a laborious recursive algorithm,
starting from the highest weight Λ. In many situations it is practical to read off their values
from the tables [20]. Standard bases of simple roots (α-basis) and of dominant weights (ω-basis)
are used here [9].

Due to (3) a number of important properties of characters carry over to properties of orbit
functions.

The sets P and P+,

P = Zω1 + · · · + Zωn ⊃ P+ = Z
≥0 ω1 + · · · + Z

≥0 ωn

are called respectively the weight lattice and the cone of dominant weights. The smallest domi-
nant weights, different from zero, are the fundamental weights ωj .

The fundamental region F ∈ R
n of the simple Lie group G of rank n is the simplex which

has for its vertices the origin of R
n and the fundamental weights appropriately scaled. More

precisely, the following n + 1 points are the vertices of the simplex F .

F :
{

0,
ω1

q1
, . . . ,

ωn

qn

}
, (4)

where qk are the coefficients of the dual of the highest short root in α-basis. For A2 we have
q1 = q2 = 1. In particular, F is an equilateral triangle in the case of A2. See Fig. 1 of [21] for
instructive examples of F .

3 Orbit functions

An orbit function Ω(d, x) of a compact simple Lie group G (equivalently of the Lie algebra L)
can be written as a sum of exponential functions e2πi〈v |x〉. Each term of the sum is determined
by a weight v of a Weyl group orbit O(d) as function of x ∈ R

n. The symbol 〈v |x〉 denotes
scalar product in the Euclidean space R

n.
Let O(d) be the Weyl group orbit containing the (unique) dominant weight d. The orbit

function Ω(d, x), referring to O(d), is the following finite sum of exponential functions,

Ω(d, x) =
∑

v∈O(d)

e2πi〈v |x〉, x ∈ R
n. (5)

Note that for any v, d ∈ O(d), we have the equality Ω(d, x) = Ω(v, x). It is an convention to
label the orbit functions by their dominant weights because those weights are easily recognized
in ω-basis. The number of summands is equal to |O(d)|, the number of weights in the orbit O(d).

3.1 Examples

Clearly the orbit functions of A1, where x = θω, and d = mω, m ∈ Z
≥0, with θ ∈ R, are

Ω(d, x) = 2 cos(πmθ) if m ∈ Z
>0, because 〈ω |ω〉 = 1

2 , and Ω(0, x) = 1.
Consider the example of the generic orbit functions of A2. Putting d = (a b) := aω1 + bω2,

with a, b > 0, we have,

Ω((a b), x) = e2πi〈(a b) |x〉 + e2πi〈(−a a+b) |x〉 + e2πi〈(a+b −b) |x〉

+ e2πi〈(b −a−b) |x〉 + e2πi〈(−a−b a) |x〉 + e2πi〈(−b −a) |x〉.
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Using x = θ1ω1 + θ2ω2, where θ1, θ2 ∈ R, and (a b) = aω1 + bω2 = 1
3(2a + b)α1 + 1

3(a + 2b)α2,
where a, b ∈ Z, we have

Ω((a b), x) = e2πi
1
3 ((2a+b)θ1+(a+2b)θ2) + e2πi

1
3 ((−a+b)θ1+(a+2b)θ2)

+ e2πi
1
3 ((2a+b)θ1+(a−b)θ2) + e2πi

1
3 ((b−a)θ1+(−2a−b)θ2)

+ e2πi
1
3 ((−a−2b)θ1+(a−b)θ2 + e2πi

1
3 ((−a−2b)θ1+(−2a−b)θ2). (6)

Similarly one finds O((a 0), x) and O((0 b), x) using (5):

Ω((a 0), x) = e
2πi
3 a(2θ1+θ2) + e

2πi
3 a(−θ1+θ2) + e

2πi
3 a(−θ1−2θ2), (7)

Ω((0 b), x) = e
2πi
3 b(θ1+2θ2) + e

2πi
3 b(θ1−θ2) + e

2πi
3 b(−2θ1−θ2). (8)

Note that Ω((a a), x) are real valued for all a ∈ Z
>0:

Ω((a a), x) = 2 {cos 2πa(φ1 + φ2) + cos 2πa(2φ2 − φ1) + cos 2πa(2φ1 − φ2)}
= 2 {cos 2πa(θ1 + θ2) + cos 2πaθ1 + cos 2πaθ2} . (9)

Note also that the pairs Ω((a 0), x) + Ω((0 a), x) or, more generally, Ω((a b), x) + Ω((b a), x) are
always real.

3.2 Other properties of orbit functions

A number of properties of the orbit functions can be either inferred directly from (5) or from
the properties of characters.

1. An orbit function is a finite sum of exponential functions. Therefore it is continuous and
has continuous derivatives of all orders in R

n.

2. All orbit functions of the following groups are real:

A1, Bn, Cn, D2k, E7, E8, F4, G2.

The orbit functions of the remaining groups are real provided the dominant weights d are
invariant with respect to the symmetry transformation of the Dynkin diagram.

3. Matrix C = (cΛ,z) of the multiplicities of the dominant weights in irreducible represen-
tation Λ is triangular with diagonal elements being all equal to 1 (assuming a suitable
ordering of the weights). Hence it can be easily inverted. Consequently, every orbit func-
tion can be expressed as an integer linear combination of a finite number of irreducible
characters. Many examples of C are found in the tables of [20].

4. Symmetries of the orbit functions.

By definition, Ω(d, x) is invariant under the action of the Weyl group:

Ω(d, x) = Ω(wd, x), for all w ∈ W. (10)

Indeed, the weights d and wd belong to the same orbit and the expression for Ω(d, x)
contains summation over all the weights of the orbit.

From the equalities of scalar products, 〈wa |x〉 = 〈a |w−1x〉 and 〈a |x〉 = 〈wa |wx〉 for all
a ∈ O(d) and w ∈ W , follow the corresponding equalities of orbit functions.

Multidimensional periodicity of Ω(d, x) follows from such a periodicity of χ(Λ, x). Copies
of F tile R

n. Character values on each tile are the same. Such a symmetry of characters
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and orbit functions is naturally expressed as the invariance under the affine Weyl group as
illustrated in the last section below. Values of orbit functions are thus repeated on each
tile. More precisely, characters, and thus also orbit functions, are symmetric with respect
to any common (n − 1)-dimensional face of two adjacent copies of F .

5. The normal derivative of Ω(d, x) to the boundary of F equals zero. It follows from the
continuity of Ω(d, x) and of its derivatives, together with the symmetry with respect to
the reflections in sides of F .

6. Orthogonality of orbit functions on F follows from the orthogonality of characters, and
from the fact that a given weight belongs to precisely one orbit function.

7. There are other aspects of orbit functions which could be rather useful to study. Let us
just point out the following ones:

Decomposition of products of orbit functions into their sums [17].

Branching rules for orbit functions [22–24].

Recursive construction of orbit functions from a few smallest ones.

Scaling symmetries of orbit functions.

Derivatives of orbit functions.

4 Orbit functions and the Neumann boundary
value problem on F

It is shown here that an orbit function is an eigenfunction of the Laplace operator ∆, acting on
the class functions of G, and that its eigenvalue is, up to a constant, given by the square length
of the weight of the corresponding Weyl group orbit. It was already explained that the normal
derivative of an orbit function at the boundary of F equals zero (Neumann condition). Hence
any function, expanded into a series of orbit functions, has to satisfy the same condition at the
boundary of F .

Let x = θ1ω1 + · · ·+ θ2ω2. Denoting by ∂k partial derivative with respect to θk, we have the
Laplace operator ∆,

∆ =
n∑

i,j=1

Mij∂i∂j (11)

acting on the orbit functions and, more generally, on the class functions f(x). For simple Lie
groups of types An, Dn, and En, the matrix M coincides with the Cartan matrix. For the other
cases some columns of the Cartan matrix need to be rescaled.

Next let us show the following properties of orbit functions Ω(d, x) of A2, equivalently of
SU(3):

∆Ω(d, x) = λΩ(d, x),
∂Ω(d, x)

∂m

∣∣∣∣
∂F

= 0, x ∈ F ⊂ R
n, d ∈ P+, (12)

where ∂F denotes the boundary of F from (4), formed by its (n − 1)-dimensional faces, and m
denotes the normal to the boundary, and where

λ = −4π2〈d | d〉. (13)

Above it was already explained that the orbit functions satisfy the Neumann condition on
the boundary of F , and that F is an equilateral triangle in the case of A2.
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Consider the SU(3)-Laplace operator ∆ acting on a single term e2πi〈z |x〉, and suppose that
both, the fixed vector z = (a, b) and the variable vector x = (θ1, θ2), are given in ω-basis. Their
scalar product is calculated using the inverse of the Cartan matrix of A2.

〈z |x〉 = zT Q x = 1
3(a b)

(
2 1
1 2

)(
θ1

θ2

)
= 1

3(2a + b)θ1 + 1
3(a + 2b)θ2. (14)

In particular, for a general z ∈ P and ξ = ω1 + ω2,

〈z | z〉 = 2
3(a2 + ab + b2), and 〈z | ξ〉 = a + b.

Application of the Laplace operator to the exponential function is straightforward,

∆e2πi〈z |x〉 = (∂1 ∂2)
(

2 −1
−1 2

)(
∂1

∂2

)
e2πi〈z |x〉 = 2

(
∂2

1 − ∂1∂2 + ∂2
2

)
e

2πi
3 {(2a+b)θ1+(a+2b)θ2}

= 6
(

2πi

3

)2

(a2 + ab + b2)e
2πi
3 {(2a+b)θ1+(a+2b)θ2} = −4π2〈z | z〉e2πi〈z |x〉.

Weights of an orbit O(d) are equidistant from the origin, i.e. for any z ∈ O(d) we have
〈z | z〉 = 〈d | d〉. Therefore the eigenvalues of ∆ are the same on all the exponential terms of an
orbit function. Consequently, the eigenvalues of the orbit functions and of each of its exponential
terms are the same.

4.1 Symmetry under the affine Weyl group

The invariance of the orbit functions under the Weyl group is built into their definition through
the summation over the elements of an W -orbit. Indeed, W merely permutes the terms in that
sum. More spectacular is the symmetry of orbit functions under the affine Weyl group W aff . It
is a larger group than W . It has one more generator, namely the affine reflection r0,

r0x = x +
(

1 − 2〈x | ξ〉
〈ξ | ξ〉

)
ξ = ξ + rξx.

Here rξ ∈ W is the reflection in the plane orthogonal to the highest short root ξ. In case of A2

one has ξ = α1 + α2 = ω1 + ω2, and 〈ξ | ξ〉 = 2. The action of W aff on F results in tiling of R
n

by copies of F . In particular,

r0F = {r0, r0ω1, r0ω2} = {ξ, ω1, ω2}.

Note the translations r0rξx = x−ξ, and rξr0 = x+ξ. Putting z = (a b), a, b ∈ Z and x = (θ1 θ2),
θ1, θ2 ∈ R,

〈z | r0x〉 = 〈z | ξ〉 + (1 − 〈ξ |x〉)〈z | ξ〉 = 〈z | ξ〉 + 〈z | rξx〉 = a + b + 〈rξz |x〉.

Consequently,

e2πi〈z | r0x〉 = e2πi〈rξz |x〉.

Here rξz = −bω1 − aω2 is another weight from the orbit of z. Therefore Ω(z, x) = Ω(z, r0x).
Thus the orbit functions are invariant with respect to the affine Weyl group W aff .
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5 Discretization of the orbit functions

Here I want to recall the main result of [10], which is a discrete orthogonality of a finite (arbit-
rarily large) set of orbit functions of G, on a grid S of discrete points in F (hence in all R

n).
Equipped with such an orthogonality, one can invert finite (arbitrarily long) Fourier expansions
of class functions f(x) on G. This setting of the expansion problem is particularly suitable when
the function f(x) is provided digitally, i.e. by its values on the points of a grid.

Start by fixing a natural number M . Then S[M ], the set of points of the grid, consists of all
distinct points s ∈ S[M ] ⊂ F which, in the ω-basis, have rational coordinates with the common
denominator equal to M , subjects to the additional restriction 〈s | ξ〉 ≤ 1.

Consider Ω(d, s) for s ∈ S[M ]. Then for certain set of dominant weights d, we have

〈Ω(d) |Ω(d′)〉M :=
∑

s∈S[M ]

C [M ]
s Ω(d, s)Ω(d′, s) = δd,d′ · K. (15)

Here C
[M ]
s , K are known constants [10], overbar indicates complex conjugation, and the dominant

weights d, d′ belong to a set which contains comparable number of distinct dominant weights as
is the number of elements in S[M ].

5.1 Examples

Let G = A2, equivalently G = SU(3). In this case F is an equilateral triangle. Put M = 2. The
grid S[2] in F contains 6 points s. In ω-basis these are the following ones:

Three vertices of F : (0 0), (0 1), (1 0), and the middle points of the edges of F : (1
2

1
2), (0 1

2),
(1
2 0).

Values of a few lowest orbit functions Ω(d, s) at the points s ∈ S[2], are shown in Table 1. To
simplify the notation, we also use ω = e2πi/6. Note that the orbit functions of the first 6 rows
of the table are orthogonal on the S[2] according to (15). Orbit functions of the remaining rows
(and any higher one we might have shown) are multiples of one of the first six ones.

Table 1. Values of several A2-orbit functions at the six points of S[2], and the coefficients C
[2]
s . Notation:

ω = e2πi/6.

s (0 0)
(

1
2 0

) (
0 1

2

)
(1 0)

(
1
2

1
2

)
(0 1)

Ω((0 0), s) 1 1 1 1 1 1
Ω((1 0), s) 3 ω5 ω 3ω4 −1 3ω2

Ω((0 1), s) 3 ω ω5 3ω2 −1 3ω4

Ω((2 0), s) 3 3ω4 3ω2 3ω2 3 3ω4

Ω((1 1), s) 6 −2 −2 6 −2 6
Ω((0 2), s) 3 3ω2 3ω4 3ω4 3 3ω2

Ω((3 0), s) 3 −1 −1 3 −1 3
Ω((2 1), s) 6 2ω5 2ω 6ω4 −2 6ω2

Ω((1 2), s) 6 2ω 2ω5 6ω2 −2 6ω4

Ω((0 3), s) 3 −1 −1 3 −1 3
Ω((2 2), s) 6 6 6 6 6 6

C
[2]
s 1 3 3 1 3 1

In particular, one finds

〈Ω(0 0) |Ω(0 0)〉2 = 12, 〈Ω(1 0) |Ω(1 0)〉2 = 36, 〈Ω(1 1) |Ω(1 1)〉2 = 144.
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Figure 1. A2 orbit function Ω((2 0), x) real (left) and imaginary (right) parts.

Finally let us illustrate how to calculate the entries of Table 1. Take Ω((2 1), (1
2 0)). Its value,

2ω5, is found from (6) by putting there a = 2, b = 1, and θ1 = 1
2 , θ2 = 0, followed by obvious

simplifications.
Crystallographic symmetries of orbit functions are illustrated on Fig. 1 and 2. Fig. 1 shows

the real and imaginary parts of the A2-orbit function Ω((2 0), x). Examples of the real orbit
functions Ω((2 1), x) and Ω((1 1), x) of C2 and G2 respectively are shown on Fig. 2.
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