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In the present study, we investigate the symmetry groups of Benney equations that are the
system of nonlinear integro-differential equations. We first investigate the symmetry groups
of the Benney equations by using the method. Then we obtain all reduced forms of the
system of integro-differential equations with fewer variables based on symmetry groups; and
lastly, we seek a similarity solution to the reduced system of the equations.

1 Introduction

Symmetry group analysis deals with applications of continuous symmetry groups to the system of
differential equations in engineering, mathematics, and physics. However, in the case of integro-
differential equations (IDE), there is no general method of investigating the Lie symmetry groups
of these equations based on the solution of their determining equations. The main difficulty in
applying Lie’s infinitesimal techniques to these systems is their nonlocality, and the approach
used in the classical group theory cannot be applied for the investigation of symmetry groups
of IDE.

There are some studies about symmetry groups of integro-differential equations in the lite-
rature. Meleshko [1] searches the Lie point symmetries of the one-dimensional visco-elastic
equation and gets a classification with respect to the free term and the kernel function. The
method is based on the fact that one considers the determining equations on any solution at
any point and any time, for example, at initial time t0. Here, it is very important to have an
existence of solution of the Cauchy problem, which allows splitting the determining equations.
It is worth to note that the same problem stays in an application of the group analysis to
differential equations. For differential equations the Cauchy–Kovalewskaya theorem treats this.
One-dimensional nonlocal elasticity and one dimensional visco-elasticity equations seem a similar
structure due the type of their integral equations, it is clear that these equations have different
characteristics with respect to the mathematical and kinematics aspects. First, one-dimensional
nonlocal elasticity is in the form of Fredholm integro-differential equations by Özer [2] and one
dimensional visco-elasticity equation is in the form of Volterra integro-differential equation [1].
In addition, these two equations describe two different mechanics behaviors of the solids. It
is important to define symmetry group properties of nonlocal elasticity equations in order to
understand these different characteristics of the equations based on their symmetry groups. In
addition, Özer [3] investigated symmetry group properties of two-dimensional elastodynamics
problem of nonlocal continuum mechanics and obtained a classification due to the kernel function
and the free term.

Bobylev [4] is another author who studied the symmetry groups of the integro-differential
equations. He obtained all symmetry groups of the Boltzmann and examined some invariant
solutions of the Boltzmann equation using its Lie point symmetries. This approach in this
study is based on the assumption that we restrict the determining equations to the subset of
the solution of integro-differential equation determined by the initial conditions. Firstly, the
coefficients of the infinitesimal operator are assumed to be locally analytic functions, and then
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these coefficients are represented by Taylor series with respect to the independent variable of
the equation. The determining equation is decomposed with respect to the different powers of
an arbitrary parameter that exists in the initial functions. Finally the determining equations
are split to the series of equations by equating the coefficient of every different power of the
independent parameter to zero. Symmetry groups are found by the so-obtained equations.

Chetverikov and Kudryavtsev [5] have written an important article on the subject. The
method in their study consists in reducing an integro-differential equation to a system of boun-
dary differential equation and in computing symmetries and conservation laws for the system
of integro-differential equations. In the study symmetry is considered as a geometric concept.
Therefore, in order to define the symmetry of something it is first represented by some geometric
model. Then the symmetry is found by considering the transformations of the model. In the case
of integro-differential equations, the analogy with differential equations can also be used. In the
method the first step is the introduction of the nonlocal variables. In the second step the initial
system is transformed to the functional differential equations. Later the generalized jet spaces
are defined so that boundary differential equations can be expanded as submanifolds of these
spaces. Finally, a geometric theory of boundary differential equations is constructed similar to
the geometry of nonlinear differential equations. This method is fundamentally different from
our method that we use in the study.

The last work to be mentioned here is done by Taranov [6]. The first step in this approach is to
find the symmetries of the equation dependent on finite number of variables. The symmetries of
the system of integro-differential equations are obtained by approaching the number of variables
to infinity.

2 Symmetry groups of the Benney equations

In this part, we present briefly the general characteristics of the method of investigating the
symmetry groups of the Benney equations introduced in the study [7]. The method presents
an important opportunity for investigation of symmetry groups and similarity solutions, as
well as solutions of some boundary value problems related to other problems, including IDE in
engineering and science. We consider a scalar kth-order IDE represented by∏
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Roberts [8] and Zawistowski [9] studied the symmetry group properties of the one-dimensional
Vlasov–Maxwell equation based on the infinitesimal criterion (2) of integro-differential equations.

Here, we investigate the symmetry groups of the system of integro-differential equations
corresponding to the Benney kinetic equations below:
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where x and t are the independent variables as spatial coordinate and time, respectively, f is the
distribution function, v is the horizontal component of the flow velocity, and A0 is the function
defined as
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where

An =
∫ h

0
un(x, y, t)dy, n = 0, 1, 2, . . . . (5)

For this purpose, we can define the infinitesimal operator for the problem (3) with respect to
the definition of the infinitesimal operator for a partial differential equation as

X = ξx∂x + ξt∂t + ξv∂v + ηf∂f + ηA0∂A0 . (6)

Here x, v, t are independent variables and f , A0 are dependent variables of the problem. After
the calculations, we obtain a five-parameter Lie group for the Benney equations based on the
condition (2) as shown below:

ηA0 = 2a1A0, ηf = a1f, ξv = a1v + a3,

ξx = (2a1 − a4)x + a3t + a5, ξt = (a1 − a4)t + a2, (7)

that are equivalent results obtained by Krasnoslobodtsev [10] and Ibragimov [11], where a1, a2,
a3, a4 and a5 are constants.

3 Reduced forms of the Benney equations

In this part, we present all reduced forms of the Benney equations by using the corresponding
symmetry groups. First, we construct the characteristic equations with respect to the expres-
sions (7) as below:
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We obtain the general similarity variables and reduced forms of the Benney equations by using
the “integrating factor” technique. Then if we substitute the similarity forms to the original
equation (3) by using new similarity variables, then we get the new system of IDE with two new
similarity variables, namely ξ1 and ξ2, as independent variables; and f̃ and Ã0 as dependent
variables.

If we take the conditions as a1 �= 0, a4 �= 2a1, a4 �= a1, then we obtain the general reduced
form of equation (3) as
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where the first and the second similarity variables and similarity forms are as follows:
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Ã0(ξ1). (10)
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4 The relations between Benney equations
and shallow-water equations and similarity solutions

It may possible to transform the solutions of Benney equations into solutions of nonlinear-shallow
water equations
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by using the following expression given by Gibbons [12]:

f(x, t, v) = h(x, t)δ(u(x, t) − v), (12)

where h(x, t) and u(x, t) are solutions of the nonlinear shallow-water equations (11) and δ is
Dirac’s delta function. In addition to this relation, expression (12) gives us the relationships
between Benney equations and both shallow-water equations. In the case of reduced Benney
equations, we can use the following relation:

f̃(ξ1, ξ2) = h̃(ξ1)δ(ũ(ξ1) − ξ2) (13)

which have similar forms with relations (12). Then one may obtain a system of ordinary diffe-
rential equations (ODE) by using the relations (12). In this section, we give an example of the
application of symmetry groups.

For this purpose, we seek the solution for the reduced form of the Benney equations below:
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which is a special form of the reduced form. Using the form (13) we get the following system of
ODE:

ξ1h̃
′(ξ1) + h̃′(ξ1)ũ(ξ1) + h̃(ξ1)ũ′(ξ1) = 0 and ũ(ξ1)ũ′(ξ1) + ξ1ũ
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from the solutions to the system of ODE in the similarity form,
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These solutions correspond to the similarity solution of the classical case (11). One can write
the equation (3) due to the solutions (16) in the variables x, t, and v as
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1
9
(1 − t)−2(x − 1)2δ
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2
3
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)
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5 Conclusions

In this study, we obtained symmetry groups of Benney equations that are in the form of the
system of IDE. As mentioned in the introduction, although the symmetry group analysis has
many applications for the ODE and PDE in the literature, there are relatively few applications
on symmetry group of IDE since there is no general method for solving determining equations.
Several solution methods may be offered for investigating the determining equations for sym-
metry groups of problems including IDE. In the case of Benney equations investigated in the
study by Krasnoslobodtsev [10] and Ibragimov et al. [11], symmetry groups of these equations
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were investigated based on the canonical multiplication law and the methods of moments, re-
spectively. In our study, we calculated the symmetry groups of Benney equations by using
a different method, explained in the study. After calculations, it was found a five-parameter
Lie group of transformations of Benney equations. These results are parallel to the results
presented in Ibragimov’s study based on using the canonical Lie–Bäcklund operators. These
results are parallel to the results presented in Ibragimov’s study based on using the canonical
Lie–Bäcklund operators. We obtained the general reduced forms of Benney equations by using
the characteristics based on symmetry groups. Then we obtained the general reduced forms of
Benney equations by using the characteristics based on symmetry groups. One of the important
advantages of investigating solutions of Benney equations is based on the fact that one may
transform these solutions into solutions of the shallow-water equations and Benney equations
derived form the two-dimensional Euler equations for inviscid, incompressible fluid, and from
the reduced form of the equation. In the study, we showed a similarity solution for a reduced
equation, and proved that each solution obtained from solutions of each reduced form of the
systems of IDE can be used to obtain similarity solutions of Benney equations.
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[2] Özer T., On the symmetry group properties of equations of nonlocal elasticity, Mech. Res. Comm., 1999,
V.26, 725–733.
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