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Solitary Wave Solutions for Heat Equations
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We present exact solitary wave solutions for a class of nonlinear heat equations and for
coupled system of heat equations.

1 Introduction

A great number of mathematical models in thermomechanics, chemistry, biology, ecology, etc.,
are formulated using nonlinear heat equations. Some of these models admit exact solutions which
play fundamental role for theory of the related equations and have large application values, refer,
e.g., to monograph [1].

There are well-known regular approaches for searching exact solutions of partial differential
equations (see, e.g., monographs [2—4]) which make it possible to find specific changes of depen-
dent and independent variables (Ansétze) reducing equations of interest to simpler ones. Usually
the possibility of such reduction is caused by the symmetry (classical Lie [2], conditional [3],
Lie-Bécklund [4], etc.) of the related equations.

In the present paper we find exact solutions for the nonlinear heat equations

U — Ugz = f(u) (1)
and for coupled systems of heat equations

Ut — Ugy = f(u, U)a

Ut — Ugx = g(U7 U), (2)

where f(u), f(u,v) and g(u,v) are functions of dependent variables specified in the following.
To find these solutions we use the “universal” Ansatz of the following general form

p(2) 3)

U= (Z:r)k

and

v = (2)"(2), (4)

where the new variable z is a function of ¢ and .

The Ansétze (3), (4) appear to be very effective tools for reduction of equations (1), (2) and
many others, refer e.g. to [5,6]. In particular, they enable making a wide class of reductions
caused by classical Lie symmetries and conditional symmetries as well [5].

In this paper we use Ansétze (3), (4) to find special exact solutions of equations (1), (2),
namely, solitary wave solutions. We present also some other solutions which appear in our
analysis. To achieve our goals we select special classes of equations (1), (2) which can be
reduced using the mentioned Anséatze.



Solitary Wave Solutions for Heat Equations 35

2 Reduction of equations (1) with cubic nonlinearity
We start with equations (1) with the cubic nonlinearities, i.e.,
Ut — Upy = —2u3. (5)

Exact solutions for (5) as well as for equation (1) with cubic polynomial nonlinearity were
found in [7,8] using the conditional symmetry approach. Here we find these solutions directly
using Ansatz (3). The results presented in this section will be used to construct solutions for
the system of heat equations (2).

Using Ansatz (3) with & = 1 we find

Ut = 2tz P + 222t¥z, Uy = Zgzp + Z;?:Spm
Ugy = ZgazP + 3zmzzm¢z + Zg()@zz, u3 = Zi@?)- (6)

Substituting (6) into (5) and equating coefficients for ¢ and ¢’ we come to the following reduced
equations

2tz — Zzgaz = 0, 2 — Bzgx = 0, (7)

Pzz = 2803- (8)

Up to constant multiplier and shifts of ¢ and x solution of (7) have the form
2 = 6t + 2. (9)

Solutions of equations (8) can be expressed via Jacobi elliptic functions. In paper [5] we
present an infinite set of such solutions (and solutions for equation (1) with cubic polynomial
nonlinearities as well) in explicit form.

Thus the Ansatz (3) makes it possible to find exact solutions for equation (5) in the form

u = 2z (6t+x2) )

where ¢(z) is an elliptic function satisfying (8).
In the following Section we generalize the reduction scheme (5)—(9) to find exact solutions
for systems of heat equations (2).

3 Reduction and exact solutions for equations (2)

Consider a subclass of equations (2) where f and g are homogeneous functions of order 3, i.e.,
FOw, ) = X f(w,0), g0, Av) = Ng(u, v). (10)

To find exact solutions of these equations we need nothing but a direct generalization of
the procedure described in the previous Section. Indeed, all such equations can be reduced to
systems of ordinary differential equations using the Ansétze (3), (4) for k = 1. In analogy with
(5)—(9) we obtain

u:23:g0(6t+x2), v:2$£(6t+x2),
' =f(9:€), & =gy ). (11)

Thus to find exact solutions for system (2), (10) it is sufficient to solve the system of ordinary
differential equations (11). For some particular form of functions f and g this system can be
integrated in quadratures. Here we consider three examples.
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1. Let f =2 (u3 — 3ulv + 2uv2), g = 0. Then equations (11) admit the following particular
solutions: ¢ = 1—tanh(z), £ = 1. Using them we come to the following solutions for the related
equations (2)

u =2z (1 —tanh (z* + 6t)), v = 2. (12)

For any finite interval zyp < x < z1 solutions (12) are bounded. Moreover, the pattern u has
a solitary wave sharp. The plot of function u (12) is given in Fig. 1.
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Figure 1. Solutions u (12) for t =0,-1/6,—-1/3,—-1/2,-3/2,—-5/6,—1.

We see that when the time variable ¢ runs from ¢ = —1 to t = 0 our solitary wave moves from
the point £ = 5.5 to x = 0.6 and its amplitude decreases.
2. Consider now the system (2) with nonlinearities of the following general form

f= % (*u" 307" — n(2n + m)v"uP ™),

9= 5 (22" 20" — (n+2)(2n +m 4 2)0" ) (13)

where ¢ = £1, m and n are arbitrary parameters satisfying m +n # 0, n # 0, —2.
The Ansatz (4) reduces (2), (13) to the following system of ordinary equations

90// —c (n290n+3£—n o n(2n + m)gomf_m+3) ’
"= ((n+ 27" = (n+2)(2n +m 4 2)E ")

whose solutions for ¢ = —1 and € = 1, are expressed via trigonometric and hyperbolic functions
respectively. Thus for ¢ = —1 we come to the following exact solutions for (2), (13)
2ux PIR pa. a 2ux vy q— 2En)
= 6t ntm = 6t ntm 14
u n+m[cos(,u( + 27))] v n+m[cos(u( +27))] (14)
For nfm < 0 and % < 0 solutions (14) are bounded on any finite interval xop < x < 1.
The plots of these solutions for n = 2, m = —1 are given in Figs. 2, 3.

If € = 1 then the related solutions can be found in the form
n+2

ST htm [ch(u(&:fl—l—a:?))} . (15)

_ 2ux
~ n+m | ch(u(6t + 22

1 ] e 24T
) ’

For 2t > 0 and % > 0 formulae (15) present solitary waves. We notice that solutions (15)
are not of plane wave type and their amplitudes decrease if ¢ goes from —ty to 0 (t9 > 0). The
plots of these solutions for n = 1, m = 0 are given in Figs. 4 and 5.

Like in the case of solutions (12), when ¢ runs from ¢ = —1 to ¢t = 0, our solitary waves move
from the point x = 2.3 to z =~ 0.7 and their amplitudes decrease. When variable ¢t becomes
positive and grows the amplitudes tend to zero.

In plots given by Figs. 2-5 the value of amplitudes decrease with increasing of time variable.
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Figure 2. Solutions w (14) for t = 0,—1/3, Figure 3. Solutions v (14) for t = 0,—1/3,
~3/2,—1. —3/2, 1.
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Figure 4. Solutions u (14) for n = 1, m = 0, Figure 5. Solutions v (14) for n = 1, m = 0,
and t = 0,—1/6,—1/3,—1/2,-3/2, ~5/6, —1. t=0,-1/3,-3/2,—1.

4 Solitary wave solutions for equation (1)

Let us return to equation (1) and choose the nonlinearity f(u) in the form

1 1
flu) = —Ztlu”—i-)qu—l—)\zun—i_

+ )\3’&377” + )\4u2_", (16)

where n is an arbitrary parameter.
Reaction-diffusion equations of the general form (1), (16) can be effectively reduced using
Ansatz (3) [5]. Choosing ¢ = 2%, k = -2 we transform (1), (16) to the form

z (zxzm — ZpZpge — (k— 1)22, — M\g2% — /\3295,2) = 22 (2 — (2k + Dzge + M2+ Aozg). (17)

Equation (17) is homogeneous in dependent variable and is more convenient for searching for
exact solutions than the initial equation (1), (16).

Let us search for solutions of (17) in the form z(¢,z) = U({) where £ = ut + x and p is
an arbitrary (nonzero) constant. Then we come to the following ordinary differential equation
for U

UU (uU" —U" — \3U) — MU? — (k —1)(U")?]
= (U"?[(n + M)U' + MU — (2k + 1)U"], (18)

! dU
where U’ = &

Using the idea of Fan [9] we express U in the form

U=uvy+uvip+uep?+---, (19)
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where vg, vy, ... are constants and ¢ satisfies the equation of the following general form

o =eveo+ o+ g+

(20)

In order (19) to be compatible with (18) we have to equate separately the terms which include

odd and even powers of the square root given by (20). As a result we obtain

U'(nUU" = 2U?) = (U')* (1 + Xa),
UU'U" + MU + (k—1)(U")?) = (U)*((2k + HU" — A\ U).

Dividing any term in (21) by uU2U’ we come to the Riccati equation

yr_22y2 8
I I

/ .
for Y = %, whose general solutions are

Y = _—)\?’tanh (%E—I—C),
2

-1
Y = _—)\3<tanh<7v_)\2)\3§+0)> . if A3 <0,
A2 %
) Vs
Y = —3tan< 23§+C>, it Ao)3 >0,
A2 Iz
0 .
Yy=—-—©F f A3=0,
Ag(f—l—C) ' 3

where C' is the integration constant.
Solutions (23), (24) and (25) are compatible with (22) provided

A3 As\?
,u,:—)\g, )\1:—/€—, )\4:(1—k) - s )\2)\3750
)\2 )\2
and
Al =M =0, A3 =0
respectively. Using variables
2 2
V2 x, o= —X(n—1), 1/:é

:7‘[/' =
n-12" YT a-1

we can rewrite the related equation (1), (16) as follows:
Ur — uyy = (1+vu'™") (—(n +1u" +v(n—3)u+ 0unT+1> .

The corresponding solutions for equation (26) have the following form

u= (7 (rann (o (- 1) +C>>n?1,
u=(~v)71 <tanh <b (y _ %t) N C>>ﬁ |

(23)

(24)

(25)

(26)
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where v < 0 and b = (n — 1)/ =%,

2

u= (v)iT (tan (b <y . %t) + C>> o (29)

where v > 0 and b = (n — 1),/%, and

u = o1 ((n—l) (y—%wrc))% (30)

if v =0.

For % > 1 formula (27) presents solitary wave solutions propagating with the velocity %
In the case n = 2 we come to the bell-shaped solitary wave.

If % < —1 then equation (26) again admits solitary wave solutions which are given by
relation (28). In contrast with (14) they are bell-shaped plane waves.

5 Discussion

We present a collection of solitary wave solutions for nonlinear heat equations. All these solutions
are obtained using the Ansatz (3), (4).

It is possible to show that all reductions used in the present paper are caused by the con-
ditional symmetry of the related equations (1), (2). Instead of investigation of conditional
symmetries we prefer the direct use of the universal Anzitse which seams to be the easiest way
to find equations admitting exact solutions of the desired solitary wave type.

Nevertheless the very existence of extended classes of exact solutions for systems of heat
equations shows that the problem of classification of conditional symmetries for these systems
is quite interesting. We plane to consider this problem elsewhere.
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