
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 3, 1145–1151

(Pseudo-)Trace Functions and Modular Invariance

of Vertex Operator Algebra

Masahiko MIYAMOTO

Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan
E-mail: miyamoto@math.tsukuba.ac.jp

By including interlocked modules, we showed a modular invariance property of (pseudo)
trace functions of modules for a 2-dimensional conformal field theory satisfying C2-finiteness
condition.

1 Introduction

When we encounter a new model of 2-dimensional conformal field theory, we usually try to
classify all simple modules. As one of the most popular ways, we define an S-transformation
chWi(−1/τ) of a character

chWi(τ) =
∑
n∈C

dimWi(n)qn−c/24, q = exp
(
2π

√−1τ
)

of some known module Wi = ⊕n∈CWi(n) and expand it into a power sum of q, where c is
a central charge of the model. In the classical cases with only finitely many simple modules, the
expansion became a linear sum of other characters, that is,

chWi(−1/τ) =
∑

j

aij chWj (τ), aij ∈ C.

Furthermore, if Wi is a module identified with a chiral algebra, we call such a module “vertex
operator algebra”, then every simple module has appeared in this expansion (as a trace
function) and the fusion rules, which are multiplicities N s

jk of modules Ws in the tensor product
Wj � Wk (or operator product expansion) of two simple modules Wj , Wk,

Wj � Wk =
∑

N s
jkWs,

were determined by these coefficients aij (Verlinde formula).
These are just phenomena observed in the known models and there is no guarantee for the

future, that is, there is no mathematical proof.
Actually, we have faced some models, which were discovered recently, in which an S-trans-

formation

chWi(−1/τ)

of character of some module is not a sum of q-powers and it has log q-terms, (for example, see [3]).
For example, a triplet model with central charge −2 has eight simple modules W1, . . . , W8 and
one of their characters is

S1(τ) =
1
2
(
η(τ)−1θ1,2(τ) + η(τ)2

)
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and its S-transformation becomes

S1(−1/τ) =
1
4
S3(τ) − 1

4
S4(τ) −

√−1τ

2
(
S1(τ) + S2(τ)

)
,

which has a term with log(q) = 2π
√−1τ . Flohr called such a logarithmic term “a generalized

character” in [F].
The purpose of my paper is to show that if a chiral algebra (or vertex operator algebra) V of

2-dimensional conformal field theory satisfies the following C2-cofinite condition

dim V/C2(V ) < ∞,

where C2(V ) = 〈v−2u | v, u ∈ V 〉, then the above logarithmic terms have natural meaning.
Namely, every logarithmic term implies an existence of some kind of a module (of course, it
is not a direct sum of simple modules) and conversely, the existence of such a module gives
a logarithmic term in an S-transformation of some character.

2 Definition of vertex operator algebra

In this section, we will explain a vertex operator algebra which is identified with a chiral algeb-
ra. We are not talking about the known models, but the models we will encounter in future.
Therefore, we have to give the precise description of the condition we will use.

Let us check the situation. For a given set of fields {fa(z) : a ∈ A}, define a vector space V
spanned by the fields. By adding the fields Ta defined by the differential fTa(z) = d

dzfa(z), we
may assume that V has an action of derivation T . We also assume that one of fa(z) is a vacuum,
that is, f1(z) = 1. With account of the weights of the fields, V becomes a Z-graded vector space

V = ⊕n∈ZV (n).

Consider the normal product

fa(z) ∗ fb(z) = fa(z)−fb(z) + fb(z)fa(z)+,

where fa(z)− =
∑

m≤−1
amz−m−1 is the generating operator of fa(z) =

∑
m∈Z

amz−m−1 and fa(z)+ =∑
m≥0

amz−m−1 denotes the annihilating operator of f(z). Using the normal product and deriva-

tion T , we can define infinitely many products {∗n∗ : n ∈ Z} on V as follows:

fa(z)nfb(z) =
1

2π
√−1

∮
x=0

(x − z)n[fa(x), fb(z)] for n ≥ 0,

fa(z)−1fb(z) = fa(z) ∗ fb(z), and

fa(z)−kfb(z) =
1
k!

((
d

dz

)k

fa(z)−
)

fb(z) + fb(z)

((
d

dz

)k

fa(z)+
)

, for k ≥ 2.

We will formulate the above setting as follows. We will treat only local fields in this paper,
but we can define a similar setting for super-local fields.

A vertex algebra is a triple V = (V, Y,1) consisting of a Z-graded vector space V = ⊕n∈ZV (n)
and a vertex operator Y , which assigns an End(V )-valued function in z for each v ∈ V whose
Lorentz expansion has a form

Y (v, z) =
∑
m∈Z

vmz−m−1, vm ∈ End(V )
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and a special element 1 called vacuum satisfying the following conditions: Y (1, z) is an identity
on V , lim

z→0
Y (v, z)1 = v and Y (v, z)w has a lower bound in the power of z for any w ∈ W .

Moreover, for any w0 ∈ V ∗ = Hom (V, C), w ∈ V , and the natural paring 〈V ∗, V 〉,

〈w0, Y (v1, z1)Y (v2, z2)w〉, |z1| > |z2| > 0,

〈w0, Y (v2, z2)Y (v1, z1)w〉, |z2| > |z1| > 0,

〈w0, Y (Y (v1, z1 − z2)v2, z2)w〉, |z2| > |z1 − z2| > 0

are expansions of the same rational function with singularities at z1, z2, z1 − z2 at most in the
defined regions, respectively. Here End (V ) is the set of linear transformations on V .

It is known that the latter condition is equivalent to

(z1 − z2)N [Y (v1, z1), Y (v2, z2)] = 0

for some integer N by viewing them as formal power series.
Among many vertex algebras, we are interested in the one which has a relation with conformal

field theory, that is, it has a representation of Virasoro algebra and some finiteness conditions.
We will call it a vertex operator algebra.

Namely, it is a vertex algebra (V, Y,1) such that V has no negative weights and all homoge-
neous spaces are finite-dimensional, that is,

V = ⊕∞
n=0V (n) and dimV (n) < ∞.

It also has a special element ω ∈ V (2) called conformal vector such that a vertex operator
Y (ω, z) =

∑
n∈Z

L(n)z−n−2 of ω satisfies

(1) Virasoro algebra relation:

[L(m), L(n)] = (n − m)L(n + m) + δn+m,0

(
m + 1

3

)
· c

2
,

where c ∈ C is called central charge of V ;
(2) L(−1)-derivativity: Y (L(−1)v, z) = d

dzY (v, z) and
(3) the grading operator L(0): L(0) = n on V (n).
Of course, we also consider modules. The definition of a module is a pair (W, Y W ) of a vector

space W and a vertex operator Y W such that for each v ∈ V , a vertex operator of v on W is an
End (W )-valued function Y W (v, z) whose Lorentz expansion has a form

Y W (v, z) =
∑
n∈Z

vW
n z−n−1, vW

n ∈ End (W )

satisfying

Y W (v, z)w ∈ W ((z)) for all w ∈ W

such that the set of vertex operators has a structure of vertex operator algebra isomorphic to V
(or its homomorphic image) by the normal products. Namely, we can identify Y W (v, z) as an
original field fv(z) of V .

The best way to classify all simple Z+-modules is to determine a Zhu algebra A(V ) = V/O(V )
which is given as a factor space of V . Namely, following [6], V has a product

v ∗ u = Resx
(1 + x)wt (v)

x
Y (v, x)u
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for v ∈ Vwt v and u ∈ V , where wt v denotes the weight of v. Set

O(V ) = 〈Resx
(1 + x)wt (v)

x2
Y (v, x)u | v, u ∈ V 〉

and A(V ) = V/O(V ). Then Zhu algebra A(V ) is an associative algebra with a product ∗.
The essential property of the Zhu algebra is that a top module W (0) of an Z+-graded module
W = ⊕∞

m=0W (m) is an A(V )-module, and every A(V )-module is a top module of some N-graded
module.

If we want to study nonsimple modules, the Zhu algebra is not enough. The above concept
was naturally extended to n-th graded piece of N-graded modules in [1]. Set

On(V ) = 〈Resx
(1 + x)wt (v)+n

x2+2n
Y (v, x)u | v, u ∈ V 〉

and An(V ) = V/On(V ). Like A(V ), An(V ) is an associative algebra with a product

v ∗n u =
n∑

m=0

(−n

m

)
Resx

(1 + x)wt (v)+n

xn+m+1
Y (v, x)u

and has a property that an n-th (and less) graded piece W (n) of an N-graded module is an
An(V )-module and every An(V )-module is an n-th (or less) graded piece of a module. An(V )
is called an n-th Zhu algebra. Another method is to study a Poisson algebra V/C2(V ) which is
also given as a factor space of V , where

C2(V ) = 〈v−2u | v, u ∈ V 〉
is a subspace of V spanned by elements of the form v−2u with v, u ∈ V . If dimV/C2(V ) is
finite, then V is called C2-cofinite. Zhu introduced the C2-cofinite condition in his paper [6] as a
technical condition, in order to make the trace function satisfy a differential equations, he called
it Condition C.

It was proved by [1] that as long as V is C2-cofinite, V has only finitely many simple modules.
We note that the known models with finitely many simple modules seem to satisfy this condition.

Classically, we have treated only modules W = ⊕m∈CW (m) on which the grading opera-
tor L(0) acts on W (m) as a scalar m (that is, W is a direct sum of eigenspaces of L(0)), but we
propose to include modules on which W is a direct sum of generalized eigenspaces

W (m) =
{
w ∈ W | (L(0) − m)Nw = 0 for some N

}
.

We note that if it is a simple module, it is a direct sum of eigenspaces of L(0).
When we cover modules on which the grading operator L(0) does not act semisimply (we call

such a module “logarithmic”), we have to change the setting a little. For example, a character
is usually given by

chW (τ) =
∑
m∈C

dimW (m)qm−c/24,

which coincides with

chW (τ) =
∑
m∈C

trW (m)

(
qL(0)−c/24

)
.

Since we treat a grading operator L(0) which may not be a scalar on W (m), we denote it by
a Jordan decomposition

L(0) = Lsemi(0) + Lnil(0),
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where Lsemi(0) is the semisimple part of L(0), that is, Lsemi(0) acts on a generalized eigenspace
W (m) as a scalar m and Lnil(0) is the nilpotent part of L(0) and Lsemi(0)Lnil(0)=Lnil(0)Lsemi(0).
In this case, we have

qL(0) = qLsemi(0)qLnil(0) = qm
∞∑

n=0

1
n!

(
2π

√−1τLnil(0)
)n

on W (m)

and so we can see a logarithmic term. We note that since Lnil(0) is nilpotent, the above sum is
a finite sum.

As we showed, if W is a direct sum of generalized eigenspaces of L(0), qL(0) is well-defined.
The C2-cofinite condition has a close connection with this fact.

Theorem 1 ([4]). The following are equivalent:
(1) V is C2-cofinite.
(2) All modules are Z+-graded.
(3) Every module is a direct sum of generalized eigenspaces of L(0).
(4) chW (τ) are well-defined for all modules W .

Moreover, if V is C2-cofinite, then all conformal weights are rational numbers [4].

3 Interlocked module

In the previous section we showed that if L(0) has a nonzero nilpotent part Lnil(0), then qL(0)

has a log(q)-term. On the other hand, it is natural to consider a character of W

chW (τ) =
∑

dim W (m)qL(0)−c/24

as one of trace functions

trW (v, τ) =
∑
m

(
trW (m)o(v)qL(0)−c/24

)
, v ∈ V

at v = 1, where o(v) is the grade-preserving operator of v, for example, if v ∈ Vn, then
o(v) = vn−1. Actually, from this point of view, Zhu proved that if V satisfies three conditions:
C2-cofinite condition, V has only finitely many simple modules {W1, . . . , Wk} and all modules
are completely reducible, then an S-transformation(

1
−τ

)wt [v]

trWi(v,−1/τ)

of trace function trWi(v, τ) is a linear sum of trace functions trWj (v, τ), that is,

(
1
−τ

)wt [v]

trWi(v,−1/τ) =
k∑

j=1

aij trWj (v, τ)

for some aij ∈ C. For the definition of wt[v], see [6]. We note that if L(n)v = 0 for n > 0, then
wt [v] = wt v. The important thing is that the coefficients aij do not depend on v.

Unfortunately, if we use only ordinary trace functions, since Lnil(0) is a nilpotent operator,
tr o(v)

(
Lnil(0)

)m = 0 for m ≥ 1 and so we do not have a logarithmic form in a trace function.
In order to preserve a logarithmic form, we have to extend the concept of trace function. So,
the first question is:

What is a trace function, or trace?
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The answer is that it is just a symmetric function on the algebra consisting of all grade-
preserving operators. So, the next question is whether there is another symmetric function or
not. The finite dimensional algebras with faithful symmetric functions are called “symmetric
algebras” in mathematics, and this concept has a long history in the ring theory, see [5]. The
key points are that every trace function and its S-transformed form offer symmetric functions
of n-th Zhu algebra and, conversely, we can construct some modules (we will call “interlocked”
with a symmetric function) from symmetric functions of n-th Zhu algebra.

Theorem 2 ([4]). If we have a logarithmic form in an S-transformed trace function, then there
is such a symmetric function. Conversely, if there is such a symmetric function, then it defines
a new trace function with logarithmic form.

Let us show an example. The ordinary trace is a symmetric linear function of End (W (n))
for a finite-dimensional vector space W (n). It is uniquely determined up to scalar multiple.
However, if we consider a subring R of End (W (n)), it is possible to have a new symmetric
function of R. We will show an example of such rings.

Definition 1. Let W be a V -module. We call W an interlocked module if it satisfies the following
condition: For any submodule W1 of W , there is a submodule W2 such that W1

∼= W/W2 and
W2

∼= W/W1 as V -modules.

In particular, since W/J(W ) ∼= soc (W ), every grade-preserving operator α of V on W (n)
has a form

α =


A C B

O E ∗C
O O A


 ,

where we have assumed J(W ) ⊃ soc (W ) for simplicity and B is a square matrix corresponding
to the part W/J(W ) → soc (W ). Here a Jacobson radical J(W ) denotes the intersection of all
maximal submodules of W and a socle soc (W ) of W is the direct sum of all simple submodules
of W . For such an endomorphism α, we define a pseudo-trace by

pstr (α) = trB.

It is not difficult to check that the above pseudo-trace is a symmetric linear function and we
will use it as well as the ordinary trace.

We note that the ordinary trace is one of pseudo-traces. Moreover, as we expected, it leaves
a logarithmic term of Lnil(0) and then we can define pseudo-trace function

pstrW (v, τ) =
∑
m∈C

pstrW (m)

(
o(v)qLnil(0)

)
qm−c/24

with a logarithmic form.
Furthermore, we have:

Theorem 3 ([4]). If V is C2-finite, then the space of pseudo-trace functions:

〈pstrW (v, τ) | W interlocked mods.〉

is SL2(Z)-invariant. Namely, an S-transformation of pseudo-trace function is a linear sum of
pseudo-trace functions.

Note that the above space contains all ordinary trace functions and so an S-transformation
of ordinary trace function is a linear sum of pseudo-trace functions.
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Corollary 1 ([4]). If V = ⊕∞
m=0Vm is C2-cofinite and there is no logarithmic modules, then the

space spanned by the set of all (ordinary) characters is SL2(Z)-invariant.

We will also show a bound of the effective central charge c̃ = c−24hmin, where c is the central
charge and hmin is the smallest conformal weight.

Corollary 2 ([4]). If V = ⊕∞
m=0Vm is C2-cofinite, then the

c̃ ≤ dim(V/C2(V )) − 1
2

.
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