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New approach to spikes (burst) recognition is described. The symmetry properties of recog-
nized objects are the foundation of the methodology. The objects are described by ordinary
differential equations in special phase space. Then the symmetry is connected with phase
flow of ODE systems. Neuronal spikes recognition is the example of approach application.

1 Introduction

In recent research of data processing, pattern recognition, modelling the problem of recognition
of abrupt changes and intrinsic structures is very important. Especially interesting are also
applications of recognition of the structural elements in time series data. The examples are
the cycles in economics, spikes in neurophysiology, textures in pattern recognition. Analysis
follows to the conclusion that structural properties are geometrical properties of some objects.
This requires the application of geometrical approach to geometrical properties recognition.
Proposed study covers the problem of recognition of objects that have the form of mappings of
a segment onto a manifold. The method presented is based on symmetry analysis.

2 Abstract statement of the problem

Let us consider the following function of class k:

ϕ : [a; b] → M, (1)

where [a; b] ⊂ R, and M is some manifold of class k. We shall designate the set of such functions
as Φ. So, functions (1) describe geometrical objects in M .

As is known, manifolds are metrizable. Let us designate one of possible distances

dM : M × M → [0; +∞) . (2)

Similarly we may introduce a distance function between geometrical objects in M

d : Φ × Φ → [0; +∞) . (3)

Consider an arbitrary transformation T that acts on Φ:

T : Φ → Φ. (4)

Then we can define classes KT (ε) of geometrical objects in M :

KT : (0; +∞) → 2Φ, (5)
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where 2Φ is a set of subsets in Φ, and

KT (ε) = {ϕ : d (Tϕ, ϕ) < ε} . (6)

Suppose that A ⊂ 2Φ consists of several classes KTi (εi), i = 1, . . . , n. Then the problem of
classification consists in finding Ti if A is given.

3 Geometrical objects described
by an ordinary differential equation

Suppose we have n ordinary differential equations of order m:

dy(0)

dt
= y(1),

dy(2)

dt
= y(2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dy(m−1)

dt
= fi

(
y(0), y(1), . . . , y(m−1)

)
, (7)

where i = 1, . . . , n, and f is bounded function defined on some area D ⊂ R
m. Then all

functions y (t) that are solutions of (7) induce a set of geometrical objects on R
m. In this

particular case (1) takes the form

ϕ : Aϕ ⊂ R → R
m, (8)

where

ϕ : t �→
(
y(0) (t) , y(1) (t) , . . . , y(m−1) (t)

)T
(9)

and ϕ is a function of class 1. Then for an arbitrary point p ∈ D there exists the only function

yp (t), that
(
y

(0)
p (0) , y

(1)
p (0) , . . . , y

(m−1)
p (0)

)T
= p. Let us define such mapping Xof D into R

m,
that

X : p �→
(
y(1)

p (0) , y(2)
p (0) , . . . , y(m)

p (0)
)T

. (10)

It is a vector field on D, induced by equation (7). Similarly, we can define a local one-
parametric group G, that acts on D:

gτ : p �→
(
y(0)

p (τ) , y(1)
p (τ) , . . . , y(m−1)

p (τ)
)T

. (11)

Consider the action of G on set Φ of geometrical objects represented by functions

φ : Aφ ⊂ R → D. (12)

by formula

gτ : Φ → Φ, (13)
gτ (ϕ) (t) = gτ (ϕ (t − τ)) . (14)

Let us introduce a set of functions

Qτ : Φ → [0; +∞) , (15)

that act as

Qτ : ϕ �→ d (gτ (ϕ) , ϕ) . (16)

It is obvious that Qτ (ϕ) = 0 for any admissible τ if and only if ϕ is a solution of (7). Then we
have a simple criterion of evaluation of adjustment of the geometrical object to given differential
equations (7).
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4 Neuronal spikes recognition as example
of symmetry analysis application

Analysis of populations of neurons represents an important step for better understanding of brain
functioning. The present theories of brain functioning put accent on the neuronal interactions in
terms of syncronized firing across many neurons, or spatio-temporal interactions and presence
of specific patterns. Many such neuronal interactions cannot be observed with recordings from
single neuron. Thus, analysis of neuronal populations does not simply provide an additive scheme
for increase experimental data but makes possible to detect some features of brain functioning
that could never be observed with recording of only single neuron. We represent at Fig. 1 typical
example of spike in neurophysiological data.

Figure 1. Spike example and its portrait in phase space. The centers of the spikes are at 0.41 ms. The
axis x corresponds to time and axis y corresponds to voltage in electrode.

The basic hypothesis used to detect and separate action potential of neurons assumes that
spikes generated by the same neurons have similar shapes and these shapes are unique and
conservative for each recorded neuron. The shape of neuron spikes detected by the electrode
depends on the distance, relative position, properties of the media, e.g., presence and distribution
of glia cells, between electrode and neurons. The shape also depends on resistance of electrode
and neuron. Thus, even if two neurons are identical, their action potential detected at the
microelectrode can be different and, thus, spikes from such neurons could be separated.

The number of different methods used in the neurophysiology for spike sorting dramatically
increases. One of the most popular methods is template matching. These techniques use tem-
plates that represent some typical waveform shapes of neurons in time domain. A classification
of a candidate spike is done by its comparison to all templates and selecting the best matching
one.

There are many basic problems that should be solved for successful spike sorting. The first
basic question concerns the number of different types of neurons that should be separated in
the experimental data. The usual practice is to use a “supervisor”, i.e. the experimentator, who
can provide a preliminary classification of data, e.g. selection of template spikes, based on his
experience and knowledge. However, even if the number of classes is identified, the separation of
spikes remains very difficult problem due to extracellular and intracellular noise that can disturb
the form of the action potential.

The extracelular noise is usually taken into account by the most of models as an additive
noise. The intracellular noise that can produce variation in the spike waveform is more difficult to
account for. Recently we have proposed a new method for spike sorting that consider the problem
of spike sorting in phase space and describe the spike waveform as an ordinary differential
equation with perturbation. This approach made possible to account for both extracellular and
intracellular noise. The differential equation describing the activity of a neuron was supposed
to have a limit trajectory in phase space, and noise was treated as deviation of the signal from
that trajectory. Current study provides further development of this idea. In contrast to that
we proposed a numerical method that takes into account that the variety of spike waveforms
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generated by the same neuron cannot be explained only by influence of both kinds of noise on
some “typical” for a given neuron impulse, but it should be considered as a whole.

Let us suppose that every observed spike xi(t) of the i-th neuron is a solution of an ordinary
differential equation with perturbation

d3x

dt3
= fi

(
x,

dx

dt
,
d2x

dt2

)
+ F

(
t, x,

dx

dt
,
d2x

dt2

)
, (17)

where F (·) is a perturbation function. The perturbation function F (x, . . . , t), bounded by a small
value, is a random process with zero mean and small correlation time τ∗ � T . The solution of
the equation

d3x

dt3
= fi

(
x,

dx

dt
,
d2x

dt2

)
(18)

describes a self-oscillating system. The duration of spikes is limited, so we can suppose that
x(t) is defined on some interval (a; b). In practice parameters a and b are chosen manually by
an expert. Set of differential equations

dx(0)

dt
= x(1),

dx(1)

dt
= x(2),

dx(2)

dt
= fi

(
x(0), x(1), x(2)

)
, (19)

where x(k) is the k-th derivative of x(t) is equivalent to (18).
If function fi is defined in open domain D ⊂ R

3 then any solution x(t) of (19) induces phase
trajectory �X(t) =

(
x(0) (t) , x(1) (t) , x(2) (t)

)T
. In this case the trajectory is also an integral curve

for (19). The theorem about existence of a solution for an ordinary differential equation gives
that for an arbitrary point p ∈ D there exists such integral curve �Xp (t) that �Xp (t0) = p for
some t0 and �Xp (t) is a solution of (19).

The equation (18) induces a local one-parameter group G on D. Let us define some action
gτ ∈ G on D. Consider integral curve �Xp (t) that passes p when t = t0. Then

gτ : p �→ �Xp (τ + t0) , (20)

i.e., gτ (p) describes the state of system (19) at time moment τ + t0 under initial conditions p.
If the action of G on D is known we can introduce a criterion that allows to determine

whether an arbitrary function x(t), defined on interval (a; b), is a solution of (19). That is,
�X(t) =

(
x(0) (t) , x(1) (t) , x(2) (t)

)T
is an integral curve for (19) if and only if

gτ

(
�X (t − τ)

)
= �X (t) (21)

for any t ∈ (a; b) and any permissible τ ∈ (−ε; +ε).
Therefore, the new theoretical background uses a wider class of differential equations, not

necessarily describing self-oscillating systems. Another essential difference is that the activity of
a neuron is classified with a symmetry transformation in phase space. Criterion of classification
is the steadiness of the portrait in phase space of a spike against the transformation that corre-
sponds to the given neuron (under the action of local one-parameter group). A computational
method for modelling transformations is introduced and tested.

The algorithm to separate neuronal spikes several intermediate steps:

1. Spike detection from the noisy signal;

2. Calculation of distances between the phase trajectories of the detected spikes;

3. Detection of spikes that hypothetically belong to the same neuron;
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Figure 2. A vector field and its integral curves that correspond to solutions of equation (3). The action
of gt on point p is shown. The curve G0 corresponds to trajectory of equations (19) invariant under the
action of one-parameter group. Any other curve G1 (not the solution of the system (19)) is not invariant
under the action of group which corresponds to system (19). The difference between G1 and transformed
curve G1 (dashed line) is the measure of dissymmetry and is the tool for classification.

4. Building a numerical model of transformation group that corresponds to every neuron
observed;

5. Classification of spikes.

The three first steps were performed similarly to our previous analysis and are described
in details in elsewhere [1]. In this article we only briefly summarize the main implementation
details and parameters of calculations of these steps that are important to reproduce our work.
The vector field approach (steps 4–5) is described and main differences between old and new
algorithm are emphasized.

The first 4 steps corresponded to the training phase on which the number of spike classes was
estimated and the vector field for each class was constructed. In order to perform this analysis
a few dozens of spike occurrences, usually corresponding to several minutes of recording time
were required. Like in our previous approach a human expert could participate at step 3 were
the number of spike classes was detected.

The method described in the article is development of the method based on template matching
in phase space. The stages of spike detection and forming spike classes are generally similar
to the latter. The essential difference of the method presented from template matching is
implementation of spike classification after spike classes are formed. The template matching
method characterizes the whole class of spikes generated by the same neuron by the phase
portrait of its typical spike.

In contrast to other methods, the method based on symmetry analysis uses computational
modelling of vector field that conforms the differential equation describing the activity of the
chosen neuron and thus it is more stable against alterations of spike form. It showed better
results than the former and can be useful in experiments, where spikes tend to change their
form. More details are adduced in [1–4].
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