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On the Algebra of Unharmonic Quantum Oscillator
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In present work we consider C∗-algebras C∗(Af ) associated with simple unimodal non-
bijective dynamical system (f, R) with special requirements. In the case when f is poly-
nomial, Af = C〈X,X∗| XX∗ = f(X∗X)〉 and C∗(Af ) is its enveloping C∗-algebra. As
typical examples we consider one-parameter family fµ(x) = µx(1 − x) and two-parameter
family called Unharmonic Quantum Oscillator fp,q(x) = 1 + px− qx2. The crossed product
structure of C∗(Af ) is investigated. As a consequence we describe complete isomorphism
invariant in terms of corresponding dynamical systems.

1 Introduction

C∗-algebras associated with dynamical systems arise naturally in pure mathematics as well as in
applications to physics (see [1] and bibliography for more details) in particular to quantum optics
(see [4]). For example Heisenberg algebra generated by operator X such that XX∗−X∗X = �I
associated with linear dynamical system x → � − x on R, q-CCR algebra also associated with
linear dynamics x → � − qx. More complicated dynamics appear in algebra of Quantum unit
Disk (see [5]), more precisely this algebra is associated with one dimensional dynamical system
x → (q+µ)x+1−q−µ

µx+1−µ where µ and q are parameters of deformation. In this article we are concerned
with non-linear deformation of q-CCR which we call algebra of Unharmonic Quantum Oscillator.
It is given by generator X obeying the following relation XX∗ = � + pX∗X − q(X∗X)2 where
q > 0, p > 0.

The representation theory of C∗-algebras given by “dynamical relations” is extensively stu-
died and well known (see [1]). Its connection with many concurrent approaches to associate C∗-
algebra to a dynamical systems, for example groupoid approach and cross-product by partial
actions of a group or semigroup (see [13, 12]) is very intriguing. In the paper we use recent
work [3] to establish connection of algebra of unharmonic quantum oscillator with cross product
like algebras.

2 Cross-product like structure of C∗-algebras associated
with dynamical systems

Here we present some recent results on cross-product like structure of C∗-algebras associated
with dynamical systems developed in [3] which are necessary for the last section of the paper.

Let A be some unital C∗-subalgebra of B(H) and U ∈ B(H) be a partial isometry such
that the mapping A � a �→ UaU∗ is an endomorphism of A. If in addition pair A and U
satisfies Ua = UaU∗U and U∗aU ∈ A for all a ∈ A then A is called coefficient algebra for the
C∗-subalgebra B generated by A and U .

Let us fix some notations: d(x) = UxU∗, d∗(x) = U∗xU . Then the condition that A is an
algebra of coefficients for B will be reformulated in the following form

Ua = d(a)U∗, a ∈ A, d : A → A, d∗ : A → A.
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If A is an algebra of coefficients for B then B is a uniform closure of the finite combinations of
the form

x = U∗NaN + · · · + U∗a1 + a0 + a1U + · · · + aNUN . (1)

Where aj , aj ∈ A and satisfy the following property for all k:

akU
kU∗k = ak, akU

kU∗k = ak.

In order to guarantee the very important property of uniqueness of representation in the form (1)
one needs to impose the following (∗)-property for all x of the form (1):

||a0|| ≤ ||x||. (∗)

We will need the following central result from [3, 2.13]:

Theorem 1. Let Aj be an algebra of coefficients for Bj generated by Aj and Uj where j = 1, 2.
Assume that for both algebras property (∗) is satisfied. And assume that a mapping ϑ : A1 → A2

is an isomorphism such that ϑ ◦ d1 = d2 ◦ ϑ. Then the mapping Ψ(x) = ϑ(x) for x ∈ A1 and
Ψ(U1) = U2 can be extended to isomorphism of C∗-algebras B1 and B2.

In order to construct an algebra of coefficients we need an additional piece of notations: if
X ⊂ B then E(X) will denote the C∗-algebra generated by {X, d(X), d2(X), . . . , dn(x), . . .} and
analogously E∗(X) will denote the C∗-algebra generated by {X, d∗(X), d2∗(X), . . . , dn∗ (x), . . .}.
The following theorem (see [3, Theorem 3.11]) gives conditions for existence of algebra of coef-
ficients:

Theorem 2. Let d : A0 → B(H) is a morphism.
1. The following statements are equivalent:

a) There exists an algebra of coefficients A ⊇ A0.
b) U∗U ∈ ∩∞

n=0d
n(A0)′.

2. If the above condition is satisfied then E∗(E(A0)) is the minimal algebra of coefficients
containing A0 and d is an endomorphism of E∗(E(A0)). Moreover, each element β ∈ E∗(E(A0))
can be written as

β = α0 + d8(α1) + · · · + dN∗ (αN ).

U∗kUk and UkU∗k are the decreasing sequences of commuting projections.

3 One-dimensional dynamical systems

For convenience of the reader we repeat the relevant material from [2, 1] without proofs, thus
making our exposition self-contained. By the dynamical system we mean a continuous map f :
R → R or f : I → I, where I ⊂ R is a closed bounded interval. By the orbit of dynamical system
(f, R) we mean a sequence δ = (xk)k∈P , where P is one of the sets Z, N or −N = {−1,−2, . . .}
such that f(xk) = xk+1. But sometimes we will consider orbit as the set {xk| k ∈ P}. The
set of all orbits will be denoted by Orb (f). For x ∈ R denote by O+(x) the forward orbit, i.e.
(fk(x))k≥0. For every orbit δ ∈ Orb (f) define ω(δ) be the set of accumulation points of forward
half-orbit and α(δ) be the set of accumulation points of backward half-orbit.

By the positive orbit of a dynamical system (f(), R) we mean a sequence ω = (xk)k∈Z

such that f(xk) = xk+1 and xk > 0 for all integer k. Unilateral positive orbit is a sequence
ω = (xk)k∈N (Fock-orbit) such that x1 = 0 and f(xk) = xk+1, xk > 0 for k > 1 or ω = (x−k)k∈N

(anti-Fock-orbit) such that x−1 = 0 and f(xk) = xk+1, xk > 0 for k < −1. Define Orb+(f)
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be the set of all positive non-cyclic orbits. Note that ω(δ) = ∅ for any anti-Fock orbit δ and
α(δ1) = ∅ for the Fock orbit δ1.

Cycle β = {β1, . . . , βm} is called attractive if there is a neighborhood U of β such that
f(U) ⊆ U and ∩i>0f

i(U) = β.
Point x ∈ R is called non-wandering if for every its neighborhood U there exists a positive

integer m such that fm(U) ∩ U �= ∅.
Since we will consider only bounded from above functions f and positive orbits we can always

consider our dynamical system defined on a closed interval [0, sup f ].
In this article we will deal with simple dynamical system, which possesses one of the equivalent

properties listed in the following theorem (see [2, Theorem 3.14]):

Theorem 3. Let (f(), I) be continuous dynamical system, (I ⊂ R is closed bounded interval).
The following conditions are equivalent:

1. For every x ∈ I ω(x) = ω(O+(x)) is cycle.
2. Per (f) is closed.
3. Every non-wandering point is periodic.

f is called partially monotone if I decomposes into a finite union of sub intervals, on which
f is monotone.

For a simple dynamical system (f, I) for some positive integer m the relation Fix
(
f2m+1)

=
Fix

(
f2m)

holds (see [1]).
The class of such dynamical system is denoted by F2m . Let us note that when Per (f) is

closed [2, Theorem 3.12] implies that the length of every cycle is a power of 2 and They’re no
homoclinical orbits (i.e. orbit δ such that α(δ) = ω(δ) is a cycle).

We will need the following lemma (see [10]):

Lemma 1. Let (f, R) be dynamical system with bounded from above f such that (f(·), [0, sup f ])
is simple d.s. And let the set of periodic points which are not the points of attractive cycles, i.e.
the set [0, sup f ] ∩ Per (f)\ ∪β is attractive cycle β be finite then for every orbit δ ∈ Orb+(f) the
α-boundary α(δ) is cycle, which is not attractive.

4 Simple unimodal mapping

Definition 1. Let f ∈ C0(I, I) where I = [0, 1]. Then f is called unimodal mapping if it
satisfies the following conditions:

1. f(0) = f(1) = 0.
2. There is unique extreme point c ∈ int I and f is monotonously increasing on [0, c] and is

monotonously decreasing on [c, 1].

Definition 2. Let dynamical system (f, I) be as in theorem 4 with minimal possible n.
1. Then B0 = s0 and B1 = s1 are two one-dimensional cycles. B2k = {β1, β2, . . . , β2k}

denote the unique cycle of period 2k where βi < βj whereas i < j. B2k = B−
2k ∪̇B+

2k where
B−

2k = {β1, . . . , β2k−1} and B−
2k = {β2k−1 , . . . , β2k}. Denote by B2k(f2) the cycle of period 2k of

dynamical system (f2, I2).
2. We will say that orbit δ = (xk)k∈Z is glued to point βi of cycle B2k if there exists integer

k0 such that xk0 = βi and xk �∈ B2k for all k < k0. An orbit is glued to cycle if it is glued to
some point of this cycle.

3. We will say that an orbit is degenerate if it is glued to a cycle of period less then 2n.

Definition 3. Let βi ∈ B2m and denote Dβi

B
2k

= {δ ∈ PB
2k
|δ is glued to βi}. Denote by

Dβi

B
2k

(f2) the set D
βj

B
2k−1(f2)

where j = i − 2m−1 and βj ∈ B2k−1(f2).
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In the following theorem from [11] an analog of measurable section for dynamical system has
been constructed.

Theorem 4. Let (f, I) be F2n dynamical system with unimodal mapping f , which has only two
fix points s0 = 0, 0 < s1 < 1, and assume that for every m ≤ n there is only one cycle of
period 2m which is repellent for m < n and attractive for m = n. Define PB = {δ | δ ∈ Orb+(f),
α(δ) = B} for every cycle B of period m < n. Then

1. Orb+(f) = ∪̇BPB, where union is taken over all repellent cycles.
2. for each B there is IB = [t1, t2) and one-to-one mapping φ : IB → PB such that t ∈ φ(t)

for every t ∈ IB. Moreover IB can be chosen to lie in arbitrary neighborhood of B.
3. IB1 ∩ IB2 = ∅ for B1 �= B2.

Corollary 1. Mapping ∪βIβ � t → δt constructed in the proof is bijective correspondence
between n-copies of [0, 1) and the set of non-cyclic positive orbits.

5 Enveloping C∗-algebra

By C∗(Af ) we mean a C∗-algebra obtained from free ∗-algebra F(X, X∗) generated by X with
sub-norm ‖b‖ = supπ ‖π(b)‖ where supremum is taken over all π ∈ Rep (F(X, X∗)) such that
π(XX∗) = f(π(X∗X)) by standard factorization and completion procedure.

As shown in (see [1]) there is a bijective correspondence between representations of C∗-
algebras

A = C∗〈X, X∗ |XX∗ = f(X∗X)〉
with certain orbits of dynamical systems (f, R+). In particular, if f partially monotone contin-
uous map and (f, R) is F2m dynamical system. Then every positive non-cyclic orbit ω(xk)k∈Z
corresponds to an irreducible representation πω in Hilbert space l2(Z) given by the formu-
lae: Uek = ek−1, Cek =

√
xkek for k ∈ Z and X = UC is a polar decomposition. For the

Fock and anti-Fock representations the similar formulae hold with the exception that space is
l2(N)(l2(−N)) and Ue1 = 0 for the Fock representation. To cyclic positive orbit ω = (xk)k∈N of
length m there corresponds a family of m-dimensional irreducible representation πω,φ in Hilbert
space l2({1, . . . , m}) given by the formulae: Ue0 = eiφem−1, Uek = ek−1 Cek =

√
xkek for

k = 1, . . . , m; 0 ≤ φ ≤ 2π and X = UC
Let f be bounded from above Hermitian polynomial (hence f is always partially monotone

and continuous). Let Af = C〈X, X∗ |XX∗ = f(X∗X)〉 be ∗-algebra given by generators and
relations which has at least one representation. Let C = sup f . Then for any representation π
of ∗-algebra Af we have ‖X‖ ≤ √

C. Thus there is (exists) enveloping C∗-algebra, which we
denote by C∗(Af ). Let us note that by Theorem 3.3 [2] for f ∈ C1(I, I) simplicity of dynamical
system is equivalent to (f, I) ∈ F2m for some integer m.

6 Description of the dual space of C∗(Af)

Let A be C∗-algebra by its spectrum (sometimes called dual space), denoted by Â we understand
the set of unitary equivalence classes in the set Irr (A) of irreducible representations of A with
the Jacobson topology (see [7, Chapter 3] about several equivalent definitions). The closure
of the set S ⊆ Â is [S] = {π ∈ Â |Kerπ ⊃ ∩ρ∈SKer ρ} or equivalently [S] = {π ∈ Â | for all
y ∈ A ‖π(y)‖ ≤ supρ∈S ‖ρ(y)‖} obviously it is enough to verify last inequality only for elements
of a dense subspace of A.

In the following and consequent theorems, in case f is not a polynomial, by C∗(Af ) we
mean a C∗-algebra obtained from free ∗-algebra F(X, X∗) generated by X with prenorm ‖b‖ =



On the Algebra of Unharmonic Quantum Oscillator 1135

supπ ‖π(b)‖ where supremum is taken over all π ∈ Rep (F(X, X∗)) such that π(XX∗) =
f(π(X∗X)) by standard factorization and completion procedure. This C∗-algebra has obvi-
ous universal properties similar to those in case of polynomial map f . Theorem 4 describes the
set Orb+(f) but in order to describe spectrum of C∗(Af ) we need finer description. The reason
is that some orbit δ ∈ Pβ may be eventually periodic, hence ω(δ) could be a cycle of length 2m for
m < n and so C∗(πδ) would not be isomorphic to C∗(πγ) for non-eventually periodic (‘generic’)
orbit γ.

Let us give some definitions.

Definition 4. 1. Let δ = (xk)k∈Z ∈ PB
2k

where k ≥ 0 be such that x0 ∈ I2 then r(δ) = (x2k)k∈Z

is an orbit of (f2, I2). If δ = (yk)k∈Z is in Orb+(f2, I2) then r−1(δ) where (r−1(δ))2k = yk,
(r−1(δ))2k+1 = f(yk) is an orbit of (f, I), moreover r−1 is inverse to r.

2. Let x ∈ [0, M ] define µ−(x) = (yk)k∈Z be in PB0 where yk = fk(x) for k ≥ 0 and
y−k = f−1

− (y−k+1) for k > 0. If x ∈ [s1, M ] define µ+(x) = (yk)k∈Z be in PB0 where yk = fk(x)
for k ≥ 0 and y−1 = f−1

+ (x) and y−k = f−1
− (y−k+1) for k > 1.

Denote RB
2k

= PB
2k
\ ∪k<m<n DB2m

B
2k

.

Let H be Hilbert space with orthonormal basis (ek)k∈Z. Let U be unitary operator defined
by Uek = ek+1. For every orbit δ = (xk)k∈Z ∈ Orb+(f) there is repellent cycle B such that
δ ∈ PB further on we will always assume that x0 ∈ IB. Let us define operator Cδ via the rule
Cδek = xkek. Let Z denote the set of non-periodic orbit. Define (Ψ(X))(δ) = U

√
Cδ and extend

it to C∗(Af ). We have presentation Ψ : C∗(Af ) → B(H)Z of elements of enveloping algebra
as a operator-valid functions on Z. Later on we will see that if Z endowed with topology
induced from dual space, Ĉ∗(Af ), and R is a subspace of non-degenerate orbits then for all
y ∈ C∗(Af ) Ψ(y) is continuous on R in norm topology on B(H) and continuous on Z in strong
topology.

In the following theorem we denote by [X] the closure of X in the topology of Ĉ∗(Af ) where
subset X ⊂ Orb+(f) is identified with the corresponding set of irreducible representations. If
Y ⊂ R then Y denote closure in topology of R. The set of cyclic orbits is Per(f)/∼ where
x ∼ y iff x and y belong to the same orbit. The following theorem from [11] gives the complete
description of the dual space.

Theorem 5. Let dynamical system (f, I) be as in Theorem 4 with minimal possible n. The dual
space (spectrum) of C∗(Af ) is homeomorphic to Orb+(f) �θ (Per (f)/∼ × T) where θ : Per (f)/
∼×T → Orb+(f) via the rule θ((x, φ)) is the cyclic orbit containing x. Topology on Orb+(f) is
given by the following family of closed sets {Σ = {γ ∈ Orb+(f) | γ ∈ ∪δ∈Σδ}; Σ ⊆ Orb+(f)} and
the space Orb+(f)

⊔
θ(Per (f)/∼ × T) is factor-set of disjoint union Orb+(f)

⊔
(Per (f)/∼ × T)

with equivalence relation which identifies cyclic orbit containing x with (x, 1) ∈ Per (f)/∼ × T

where topology is given by the following family of closed sets: S is closed in Per (f)/∼ × T and
Σ∪ θ−1(Σ) where Σ ⊂ Orb+(f). Moreover it is determined up to homeomorphism by integer n.

Corollary 2. Representation ⊕δ∈RB0
πδ of C∗(Af ) is faithful. Let δ ∈ RB0. Then X = {x|x ∈ δ}

is a compact subspace in R and RB0 is locally compact space. C∗(Af ) is a C∗-subalgebra in the
C∗-algebra C(RB0 , Z×ψC(X)) of all continuous mappings from RB0 to cross-product C∗-algebra
Z ×ψ C(X).

Note that in case n = 0 there systems that are not orbit-equivalent but as we saw they have
isomorphic enveloping C∗-algebras.

Before considering examples let us make some remarks

Remark 1. Then class of F2n unimodal dynamical systems with negative Swartzian, i.e. F2n ∩
SU gives examples of d.s. satisfying conditions imposed in this section.
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Now let us consider some examples. Consider the family of quadratic maps fµ(x) = µx(1−x)
where µ > 0. It is known that fµ ∈ SU . Then for µ < µ∗ ≈ 3.57 dynamical system (fµ, R)
is F2n for some n. Denote by µn > 0 the greatest value for which (fµ, R) is F2n . Then
for 0 < µ ≤ µ1 dynamical system (fµ, R) has two stable points and has no other cycles, for
µ1 < µ ≤ µ2 dynamical system (fµ, R) has two stable points and one cycle of period 2, for
µn < µ ≤ µn+1 dynamical system (fµ, R) has two stable points and one repellent cycle of
period 2m for m < n + 1 one attractive cycle of period 2n+1 and no other cycles. The following
proposition is a consequence of more general result from [14].

Proposition 1. There is νn+1 : µn < νn+1 ≤ µn+1 such that dynamical systems (fµ1 , I) and
(fµ2 , I) are conjugate iff µ1 and µ2 belongs to the same set (µn, νn+1) or {νn+1} or (νn+1, µn+1].

7 Cross-product structure of C∗(Af)

Let X be a compact topological Hausdorff space and (f, X) a continuous dynamical system.
Let Ξ = {δ ⊆ X|δ − minimal invariant subset such that for all x ∈ δ exists y ∈ δ : f(y) = x}.
For each non eventually periodic orbit δ ∈ Ξ for all x ∈ δ exists unique y ∈ δ such that
f(y) = x. Denote such y by f

(−1)
δ (x). And for arbitrary integer l > 0 define f

(−l)
δ (x) recursively

as f
(−l)
δ (x) = f

(−1)
δ

(
f

(−l+1)
δ (x)

)
. If δ is eventually periodic then f

(−1)
δ (x) is defined as such an

y ∈ δ that f(y) = x and y is non-cyclic. Define topological space Ω = {(δ, y) | δ ∈ Ξ, y ∈ δ}.
The family of sets of the form Bn,U (δ, y) = {(τ, z) ∈ Ω | fnτ (z) ∈ U} where n ∈ Z, U is an open
neighborhood of fnδ (y) constitute a basis of open neighborhoods of (δ, y) ∈ Ω.

In terms of convergent sequences the topology on Ω could be defined as follows (δk, yk)
converges to (δ, y) if and only if for any integer n ∈ Z

lim
k→+∞

f
(n)
δk

(yk) = f
(n)
δ (y).

Proposition 2. Ω is a compact Hausdorff space. And mapping σ : Ω → Ω, σ((δ, y)) = (δ, f(y))
is a homeomorphism of Ω.

Theorem 6. Let (f, I) be F2n and (g, I) be F2k dynamical systems with unimodal mapping f ,
which has only two fixed points s0 = 0, 0 < s1 < 1, and assume that for every m ≤ n (m ≤ k
for g correspondingly) there is only one cycle of period 2m which is repellent for m < n (m < k
for g correspondingly) and attractive for m = n (m = k for g correspondingly). Then Ω(f)
is homeomorphic to Ω(g) if and only if m = n. In this case dynamical systems (Ω(f), σ) and
(Ω(g), σ) are conjugated.

Proof. We give an internal description of Ω from which this theorem follows. Consider in
more detail the case n = 1. The general case could be dealt with by induction in n which is
a common situation for F2n dynamical systems (see [11]). In this case Ξ = I0∪̇I1∪̇{0, s1, β1, β2}
where 0, s1 are fixed points and B2 = {β1, β2} is a cycle of period 2. (I0 and I1 are IB0

and IB1 correspondingly in our previous notations). Then Ω could be identified with (I0 × Z)
∪̇(I1 × Z)∪̇{0, s1, β1, β2}. We use the homeomorphism Φ : IB → PB to identify the subspace
of orbits with α-boundary B with semi-interval IB. Then point (x, m) ∈ IB × Z is identified
with (Φ(x), f (m)

Φ(x)(x)) ∈ Ω. Periodic points 0, s1, β1, β2 correspond to ({0}, 0), ({0}, 0), (B2, β1),
(B2, β2) respectively. In order to distinguish point (x, m) ∈ I0×Z from the point (x, m) ∈ I1×Z

we will write subscript (x, m)0 and (x, m)1 respectively. From the definition of the topology
on Ω one can easily obtain the following homogeneity condition: sequence (xk, mk) converges to
(x, m) if and only if (xk, mk − m) converge to (x, 0). We will need some notation, definitions
and facts from the proof of Theorem 3 [11]. Let I0 = (a, b] and I1 = (t1, t2]. Then there is
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a family of semi-intervals JkB0
where k ∈ Z such that ∪̇k≥1J

k
B0

= [b1, b) and ∪̇k≤1J
k
B0

= (a, a1]
for some a1 < b1 and such that f2k : JkB0

→ I1 is a homeomorphism for each k ∈ Z. Denote
J∞
B0

= (a1, b1). Further on we will identify JkB0
with (0, 1] by means of a homeomorphism

φk : JkB0
→ (0, 1] and φ∞ : J∞

B0
→ (0, 1). Thus each point (x, m)0 will be coded by a triple

(y, k, m) ∈ (0, 1] × (Z ∪ {∞}) × Z where x ∈ JkB0
and y = φk(x). Then using nice descriptions

of F2n dynamics (see Theorems 1, 2, 3 [11]) the convergent sequences in Ω could be completely
described, for example (xk, m)1 converges to (x, t)1 if and only if xk converge to x < 1 and
m = t or xk converge to 1 and x = 0, t = m + 1; (xm, k, 2 + 2k) → (x, 0)1 if k → ∞, xm → x;
(x, 2m)i → (B2, β2) whenever m → +∞ and i = 0, 1; (x, m)0 → (B0, 0) and (x, m)1 → (B1, s1)
whenever m → −∞. This description of Ω does not depend on concrete function f but only on
the integer n. The rest of the claims are consequences of this fact. �

Let us proceed with the description of the C∗(Af ). In the case if f is unimodal C∗(Af )
is generated by unitary U and Hermitian C such that UC2U∗ = f(C2). Let A0 be unital
C∗-algebra generated by C. Obviously, A0 ⊂ C∗(Af ) and letter is generated by A0 and U .
Since each irreducible representation π of C∗(Af ) is associated to some orbit δ ∈ Orb (f) and
π(C2) is the diagonal operator with points of δ on its main diagonal the universal represen-
tation πu of C∗(Af ) acts on H = ⊕δ∈Orb (f)l2(Z) and πu(C2) is the multiplication operator

πu(C2)ξ(δ) = δξ(δ) for ξ(δ) ∈ l2(Z) and πu(U)ξ(δ) = ξ(f(δ)), πu(U∗)ξ(δ) = ξ(f (−1)
δ (δ)) . Then

A = E∗(E(A0)) is a commutative algebra of diagonal operators generated by πu(C2) and πu(U)
and thus is isomorphic to some C(Y ) where Y is a space of multiplicative linear functionals on
A. From the above description of A follows that a multiplicative linear functional ρ : A → C is
of the form ρ(g) = (g(δ))k where g ∈ A (considered as a diagonal operator in H), δ ∈ Orb+(f)
and k ∈ Z. Hence Â can be identified with Ω. One can check that the weak topology on Â
coincides with the topology on Ω under this identification. Thus A is an algebra of coefficients
for C∗(Af ). Consider an element

x = U∗NaN + · · · + U∗a1 + a0 + a1U + · · · + aNUN .

Since 〈xek(δ), ek(δ)〉 = 〈a0ek(δ), ek(δ)〉 we get that ||x|| ≤ ||a0||. Thus property (∗) is satisfied
also. Applying theorem (isomorphism) we get the following

Theorem 7. Let (f, I) be F2n and (g, I) be F2k dynamical systems with unimodal mapping f ,
which has only two fixed points s0 = 0, 0 < s1 < 1, and assume that for every m ≤ n (m ≤ k
for g correspondingly) there is only one cycle of period 2m which is repellent for m < n (m < k
for g correspondingly) and attractive for m = n (m = k for g correspondingly). (In particular,
if f ∈ F2n ∩ U and g ∈ F2k ∩ U). Then

1. C∗(Af ) ∼= C(Ω) ×σ Z.
2. C∗(Af ) ∼= C∗(Ag) if and only if n = k.

Let fp,q(x) = 1 + px − qx2 with {p, q} ⊂ R and q > 0 to provide boundedness. Since when
p < 0 dynamical system is one-to-one on R+ (and so all irreducible representations are one-
dimensional) we assume that p > 0. This dynamical system is conjugated to fµ(x) = µx(1− x)
where µ = 1 +

√
p2 − 2p + 1 + 4q. The values of parameter µ when bifurcations of cycles of one

parametric family {fµ} occurs are given in [2]. However, conjugacy relation does not preserve
positiveness, i.e. Orb+(fp,q) may not map into Orb+(fµ). This two-parameter deformation
unlike previously considered fµ give rise to Fock and anti-Fock representations. If (p, q) belong
to domain D =

{
(p, q) | q < 1

2 − p2

4 + p
2 +

√
1+2p
2

}
then for every x ∈ [0; sup fp,q] O+(x) ⊂

[0; sup fp,q]. Thus for such (p, q) algebra C∗(Afp,q) has Fock representation and as it easily
can be shown has no anti-Fock representations. In the complement of D algebra C∗(Afp,q)
has anti-Fock representations. In present paper we consider only the case when there is no
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anti-Fock representations. Let (p, q) be such that µn−1 < 1 +
√

p2 − 2p + 1 + 4q ≤ µn and
(p, q) ∈ D =

{
(p, q) | q < 1

2 − p2

4 + p
2 +

√
1+2p
2

}
then fp,q ∈ F2n . Using results cited in Section 1

and above theorem one can prove the following

Theorem 8. Let (p, q) ∈ D and µn−1 < 1 +
√

p2 − 2p + 1 + 4q ≤ µn. Let C∗(Afp,q)
′ is a C∗-

algebra generated by elements of polar decomposition of operator X in universal representation
of C∗(Afp,q) that is by partial isometry U and positive operator C such that X = UC. Then U
is an isometry and C∗(Afp,q)

′ has an algebra of coefficients extending C∗(C). The isomorphism
class of C∗(Afp,q)

′ does not depend on (p, q).
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