
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 176–178

On Integrable Systems of ODEs

Maxim W. LUTFULLIN

Poltava State Pedagogical University, 2 Ostrogradsky Str., 36003 Poltava, Ukraine
E-mail: MWL@pdpu.septor.net.ua

We classify normal systems of three and four first-order ordinary differential equations
(ODEs) that are invariant with respect to three- and four-dimensional solvable real Lie
algebras respectively, and therefore can be integrated by the Lie method.

Description of the most general form of systems of differential equations of some type that are
invariant with respect to the algebras of a fixed dimension is one of the main problems of group
analysis. The standard Lie algorithm leads to classification of such systems if all the realizations
of these algebras in Lie vector fields are known [5]. For instance, in [1] the second-order partial
differential equations that are invariant under the standard realizations of the Euclid, Poincaré,
Galilei, conformal and projective algebras were obtained. New realizations of the above algebras
was constructed and a partial differential equations invariant with respect to these realizations
were described in [2, 3, 7] (see also references therein).

A necessary step for searching realizations of Lie algebras is classification of these algebras,
i.e. classification of possible commutative relations between basic elements. As for solvable
Lie algebras, classification was completely made for only low-dimensional algebras. All pos-
sible non-isomorphic complex Lie algebras of dimension N ≤ 4 were listed by S. Lie himself.
G.M. Mubarakzyanov was the first who got the complete and suitable for application classi-
fication of the real Lie algebras of dimension N ≤ 4 [4]. In paper [6] that are based on his
classification realizations of these algebras in the spaces of the arbitrary finite number of the
variables have been classified.

In this paper we construct the systems of the ODEs that are invariant with respect to three-
and four-dimensional solvable real Lie algebras using results of [6]. The numeration of algebras
and realizations corresponds to that paper: R(A, N) denotes the Nth realization of the algebra A
(see Tables 2–4) in [6].

Consider systems of ODEs of the form

Fk(t, x, ẋ) = 0, (1)

where Fk are smooth functions, k = 1, 2, 3 for three-dimensional Lie algebras and k = 1, . . . , 4 for
four-dimensional ones. We will imply that the variable t is independent, and x = (x1, x2, . . . , xk)
variables are dependent. We denote derivatives with dots over the symbols ẋi = dxi

dt , ẋ =
(ẋ1, ẋ2, . . . , ẋk).

Let us note that invariant systems obtained by various choices of the independent variable in
basis elements of realizations are equivalent to each other. The variables are chosen to simplify
calculations in a such way that the canonic forms of realizations would not contain the operator
of differentiation with respect to the independent variable. A simplest general form of invariant
systems corresponds to this choice. An arbitrary realization of an m-dimensional Lie algebra
(m ≤ 4) is equivalent to a realization into which no more than m + 1 first variables explicitly
enter. (There is exception is only for the realizations of algebra 4A1 with rank 2 and 3, namely
R(4A1, 2), R(4A1, 5)). Under the choice of the respective coordinates and the independent
variable (t = xm+1), all the variables xi and ẋi, i ∈ {m+2, . . . , n} will be invariants. Therefore,
we search the differential invariants of realizations of three- and four-dimensional solvable Lie
algebras in the space with three (four) dependent variables.
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At first we construct the systems of three ODEs that are invariant with respect to realizations
of three-dimensional solvable Lie algebras (see Table 2 [6]). Let x4 = t be an independent variable
and x1, x2, x3 be functions of t.

We find the functional bases of the first-order differential invariants for every realization
of three-dimensional solvable Lie algebras. The corresponding calculations are not given here
as there are quite cumbersome. Using the constructed sets of differential invariants of Lie
algebras we obtain the exhaustive list of inequivalent (with respect to arbitrary regular changes
of variables) systems of first-order ODEs that are invariant under three-dimensional solvable
real Lie algebras.

By the direct verification we make sure that such systems may be reduced to the normal
forms if the rank of the corresponding realization equals three.

Theorem 1. Let system of the three ordinary first-order ODEs be invariant with respect to
a realization of a real three-dimensional solvable Lie algebra with rank 3. Then the system is
integrable in quadratures by means of the Lie method and using the same transformation of
variables, which reduce the realization to one of the realizations given in Table 2 of [6], we can
transform the system to one of the following normal forms:

R(3A1, 1) ẋ1 = f1(t), ẋ2 = f2(t), ẋ3 = f3(t);

R(A2.1⊕A1, 1) ẋ1 = f1(t)ex3 , ẋ2 = f2(t), ẋ3 = f3(t);

R(A3.1, 1) ẋ1 = f1(t) + x3 f2(t), ẋ2 = f2(t), ẋ3 = f3(t);

R(A3.2, 1) ẋ1 = [f1(t) + x3f2(t)]ex3 , ẋ2 = f2(t)ex3 , ẋ3 = f3(t);

R(A3.3, 1) ẋ1 = f1(t)ex3 , ẋ2 = f2(t)ex3 , ẋ3 = f3(t);

R(A3.4, 1) ẋ1 = f1(t)ex3 , ẋ2 = f2(t)eax3 , ẋ3 = f3(t);

R(A3.5, 1) ẋ1 = f1(t)ebx3 sin(x3+f2(t)), ẋ2 = f1(t)ebx3 cos(x3+f2(t)), ẋ3 = f3(t).

Further we carry out the similar construction of differential invariants of realizations of four-
dimensional solvable real Lie algebras, assuming x5 = t is the independent variable and x1, x2,
x3, x4 are functions of t. We choose only the realizations that exist in the space of variables x1,
x2, x3, x4, x5 = t.

As to systems of four ODEs which are invariant with respect to the four-dimensional solvable
real Lie algebras, in a similar way we obtain the following theorem.

Theorem 2. Let system of the four ordinary first-order ODEs be invariant with respect to
a realization of a real four-dimensional solvable Lie algebra with rank 4. Then the system is
integrable in quadratures with Lie’s method and using the same transformation of variables which
reduce the realization to one of the realizations given in Tables 3 and 4 of [6] we can transform
the system to one of the following normal forms:

R(A4.1, 1) ẋ1 =f1(t)+ x4f2(t) +
1
2
f3(t)x4

2, ẋ2 =f2(t) + x4 f1(t),

ẋ3 = f3(t), ẋ4 = f4(t);

R(A4.2, 1) ẋ1 = f1(t)eqx4 , ẋ2 = [x4 + f2(t)]f3(t)ex4 , ẋ3 = f3(t)ex4 , ẋ4 = f4(t);

R(A4.3, 1) ẋ1 = f1(t)ex4 , ẋ2 = x4 f3(t) + f2(t), ẋ3 = f3(t), ẋ4 = f4(t);

R(A4.4, 1) ẋ1 = [
1
2
x4

2 + x4 f2(t) + f1(t)]f3(t)ex4 ,

ẋ2 = [x4 + f2(t)]f3(t)ex4 , ẋ3 = f3(t)ex4 , ẋ4 = f4(t);
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R(A4.5, 1) ẋ1 = f1(t)eax4 , ẋ2 = f2(t)f1
b
a (t)xb

4, ẋ3 = f3(t)f1
c
a (t)xc

4, ẋ4 = f4(t);

R(A4.6, 1) ẋ1 = f1(t)eqx4 , ẋ2 = −f3(t)e2px4 sin(f2(t) + x4),

ẋ3 = f3(t)e2px4 cos(f2(t) + x4), ẋ4 = f4(t);

R(A4.7, 1) ẋ1 = [f1(t)ex4 + x3(f2(t) + x4)] f3(t)ex4 ,

ẋ2 = [f2(t) + x4] f3(t)ex4 , ẋ3 = f3(t)ex4 , ẋ4 = f4(t);

R(A4.8, 1) ẋ1 =[f1(t)eqx4 +x3]f2(t)ex4 , ẋ2 =f2(t)ex4 , ẋ3 =f3(t)eqx4 , ẋ4 =f4(t);

R(A4.9, 1) ẋ1 = [(f1(t)+ x3f2(t) sin(x4+f3(t))]e2qx4 , ẋ2 =f2(t)e2qx4 sin(x4+f3(t)),

ẋ3 = f3(t)e2qx4 cos(x4 + f3(t)), ẋ4 = f4(t);

R(A4.10, 1) ẋ1 = f1(t)e2x3 sin(x4+f2(t)),

ẋ2 = f1(t)e2x3 cos(x4+f2(t)), ẋ3 = f3(t), ẋ4 = f4(t);

R(4 A1, 1) ẋ1 = f1(t), ẋ2 = f2(t), ẋ3 = f3(t), ẋ4 = f4(t);

R(A2.1⊕2A1,1) ẋ1 = f1(t)ex4 , ẋ2 = f2(t), ẋ3 = f3(t), ẋ4 = f4(t);

R(A2.1⊕A2.1,1) ẋ1 = f1(t)ex3 , ẋ2 = f2(t)ex4 , ẋ3 = f3(t), ẋ4 = f4(t);

R(A3.1⊕A1, 1) ẋ1 =f1(t)+x4f3(t), ẋ2 =f2(t), ẋ3 =f3(t), ẋ4 =f4(t);

R(A3.2⊕A1, 1) ẋ1 =[x3 +f1(t)]f2(t)ex3 , ẋ2 =f2(t)ex3 , ẋ3 =f3(t), ẋ4 =f4(t);

R(A3.3⊕A1, 1) ẋ1 =f1(t)ex3 , ẋ2 =f2(t)ex3 , ẋ3 =f3(t), ẋ4 =f4(t);

R(A3.4⊕A1, 1) ẋ1 =f1(t)ex3 , ẋ2 =f2(t)eax3 , ẋ3 =f3(t), ẋ4 =f4(t);

R(A3.5⊕A1, 1) ẋ1 = f1(t)e2bx3 sin(x3 +f1(t)),

ẋ2 = f1(t)e2bx3 cos(x3 +f1(t)), ẋ3 =f3(t), ẋ4 =f4(t).
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