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The paper concerns the Hamiltonian structure of the finite-dimensional reductions 2D dis-
persionless Toda hierarchy constrained by the string equation. We derive the Hamiltonian
structure of the reduced dynamics and show connections of integrals of “multi-finger” so-
lutions of the Laplacian growth problem with the “Toda—Krichever” flows of the 2dToda
hierarchy constrained by a string equation. The Poisson structure of the rationally reduced
1dToda hierarchy is also derived.

1 Hamiltonians and action-angle variables

In this paper we study the Poisson structure of rational reductions of the 2dToda hierarchy,
introduced in the previous paper of the present volume [1]. These reductions, as seen from the
above considerations, form a finite-dimensional completely integrable system. We find explicit
expressions leading to a canonical Hamiltonian structure on the phase space of rational reduc-
tions of the 2D dToda system. Such reductions are interesting from the point of view of the
applications mentioned in the Introduction.

A reader interested in the Poisson structure of rational reductions of the 1dToda hierarchy
(which are infinite-dimensional, unrestricted by string equation systems) will find it in the second
part of the paper. This structure, which turns out to be a quadratic algebra, is interesting by
itself.

Since the Toda flows commute, the Toda times are actually the action-angle variables of the
system.

Thus we have only to express the times through coordinates of the phase space. For the
logarithmic ansatz [1, Proposition 4] the following result holds!:

Proposition 1. The times 1;, 7; of equation ([1].25) are expressed in terms of z and z ([1].23)
as
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or, in other words, the following values

T = zdZ + const, i=1,....,n+1
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Here and below equations from [1] are cited in the form ([1].N), where N is the number of corresponding
equation.
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are the action-angle variables and
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is a Casimir for ([1].25).

Proof. We first calculate the derivatives of each I; with respect to the times 7;, 7,7 =1,...,n.
Using integration by parts, we get

0 z%dw j{ 0 (_0z dw + j{ 0z 0= 0z 0z Jw
87'3 87} ow w; Ow 873 w; \OT;j Ow 873 ow
By equations of motion ([1].25), definition of the Lax—Poisson brackets ([1].5) and by the string
equation ([1].6) this value reduces to:

0 0z 0z 0z
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We get the Kronecker §-symbol as the final answer, since the first term in the last line vanishes.
Indeed, this occurs because z5* az is a meromorphic in w in the vicinity of any singularity w; of z

and the second term gives the 51] contribution by definition ([1].24) of H;.
Using similar reasoning we prove the rest of the proposition. |

The values (1) are similar to those appearing in the work [8] in connection with the Lapla-
cian Growth problem as integrals of the Laplacian Growth (string) equation. The following
proposition (although not assuming complex structure) confirms this fact.

Proposition 2. The values (1) form a set of integrals of the string equation ([1].6), i.e., provided
the string equation holds.

dl;/dz =0
while for the Casimir (2) we have

dQ/dx = 1.
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Proof. This is similar to the proof of proposition (1); one has to take the same steps substi-
tuting x for 7;. |

As was mentioned in the Introduction the Laplacian growth problem is endowed with a com-
plex structure, with Z being the complex conjugate of z (and bar denoting complex conjugation).
Then, as may be seen from the proposition, the Casimir @) plays the role of the area (which
grows with the unit speed), while I are functions of the harmonic moments of the boundary
curve.

Since the equations of motion ([1].25) have the following form in I, T

BTJ.Q = 0, 8;j€2 = 0, 877];72 = 51]7
9.1 — 0, o..1; =0, 0-,1; = 6 (3)

J
these variables are canonical. For instance, we may choose the following Poisson structure
{5 LYy =035, AL Lty ={LiLi}p =0,  {Q L}, ={Q, 1}, =0, (4)
H=1, H=I 5)
It is important to note that the Poisson brackets {, }, in (4) are different from {, } in ([1].5): The
former defines the Poisson structure on the space of rational solutions of the 2dToda hierarchy,

while the latter (Lax—Poisson bracket) is a dispersionless limit of the commutator.
To get similar results for the rational case we have to take a limit as in Corollary 1 of [1].

Corollary 1. Let z, Z be represented as in ([1].13)—([1].16). The following 2N + 1 wvalues
(i=1,...,N)
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are the action-angle variables in the rational case [1, Proposition 3], i.e. the variables for which
equations in this Proposition have the form (3).

Again, in the rational limit we may choose the Poisson structure as in (4), (5).

2 Poisson structure of the 1dToda hierarchy

In this section we consider the Poisson structure of rational reductions of the 1dToda system.
Recall, that for the 1dToda system one takes into account only a “half” of flows, connected
with z (but not z, or vice verse).

Oz ={H;, =}, H; = (z(w)i)+ + %(z(w)i)o, i=0,...,00. (6)

This system is bi-Hamiltonian (for general information e.g. see [3]) with two (linear and quadra-
tic) compatible Poisson structures. As it was first found in [2] for the generic Toda system ([1].2),
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the dispersionless linear Poisson brackets for the “field variables” wu;, ¢ = 1,...,00 have the
following form

{un(@), um(y) }1 = 2(cn + cm — 1) [(n + m)un+m(m)5'(x —y)+ mun+m(x>6(x - y)]7 (7)

where
1, ifk>0,
=1 3, ifk=0,
0, ifk<0

while the quadratic brackets are

1

1-n
{un(@), um()}2 = |5 (0 = m)un(2) (Z = ) (2 (2)
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As seen from the Lemma 1 of [1], the rational functions

N
N+1 ~wi
IO R
2(w) = — (9)

pn(w) N .
biwZ
&

are form-invariant under all of the 1dToda flows 0, (6), without any extra restriction (i.e. the
string equation is not needed).

We obtain the corresponding Poisson structures for coefficients a;, b;, by using result (8),
expressing u; in terms of a;, b;, i = 0,..., N. Both the linear (7) and quadratic (8) Poisson
structures lead to the quadratic brackets for a;, b;. Namely, the second Poisson structure for (9)
reads as follows

{ar(@), ai(y) 2 =

D (41— E)agn(@)arn(y) + nagn(y)arm ()

=
+U-N- 1>ak<x>az<y>] (). (10)
(k) b)) = | D206 == 1t 40(4) = -t 10(2)
+ %bk@c)bz(y)] (), (1)
{ar(@) b)) = 5 ay(@h()5 (=~ v). (12)

The first Poisson structure can be obtained from (10)—(12) with the help of the linear transfor-
mation (shift by a constant)

a; — a; + b, z(w,x) — z(w,z) + A
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and using the bi-Hamiltonian nature of (7), (8).

{ak(x)v al(y)}l - [Z ((k —l- n)<akfn(x)bl+n(y) + bkfn(x)al+n(y))

n=1
N+1-1

5 or(@)a(y)

= nlan-n(W)bren() + beon(y)arn(@)) ) +

kE+N+1-2]

! ak<x>bl<y>] 5z ). (13

{ar(z), bi(y) h = [Z ((k — L= 1)b—p(2)bign(y) — nbk—n(y)bl-i-n(x))

n=1
N+1-1
¥ Tbk(mbl(y)] 5w —y) (14)
{bx(z), bi(y)}1 =0 (15)
in all the above expressions ayy+1 = 1 and a; = 0 if ¢ goes beyond the range i = 0,..., N + 1

(and b; =01if j #0,...,N).
These brackets form a bi-Hamiltonian structure for rational reductions of the 1dToda hierar-
chy:

Oz ={H;, z}1 = {Hi—1,2}2 (16)
with the following Hamiltonians:

1
41

i

/ (2 (2))od. (17)

3 Summary and perspectives

We have established the Hamiltonian structure on the space of rational solutions of the 2dToda
hierarchy connected with the problem of ideal interface dynamics. A further application of
this result can become quite challenging in dealing with the problem of encountering a surface
tension for the Laplacian growth process.

The Laplacian growth equation ([1].1), ([1].6) describes the propagation of the boundary with
zero surface tension between the fields. Although, addressing a number of important questions
(e.g. finger width selection problem in [7]), such an idealized model does not account for essential
physical features, such as fractal formation, stability etc. Thus, the inclusion of tension effects
is important for the solution of the problem.

There are two approaches to look for in such a generalization. The first one is to introduce
tension terms in the theory, destroying the integrability of the problem. In another approach
one might look for integrable deformations of the idealized model, simulating surface effects and
stabilizing interface dynamics.

Another feature that gives our result a certain interest lies in the possible investigation of
the perturbed (by small surface tension) system given in terms of separated variables (4). In
other words, is it possible, in some situations, to approximate the perturbed solution by the
multi-finger ansatz ([1].23) with different dependence of coordinates on time z? If the answer
is affirmative we will get a finite-dimensional dynamical system, conveniently written in terms
of I, I, Q.

Finally, returning to the idealized problem, one can further elaborate the theory of rational
reductions from the point of view of symmetries. An important observation of our study is
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that once a rational reduction is compatible with 2dToda dynamics, the string condition is
satisfied automatically. In other words the string (Laplacian growth) equation ([1].6) turns out
to be a consequence of rationality in the context of the 2dToda hierarchy. On the other hand,
it is well known that the string equation is connected with additional (Orlov—Schulman [3,9])
symmetries of the 2dToda hierarchy [10]. It would be interesting to see how the string constraint
can be an element of a set of the symmetry constraints leading to the rationality of solutions.

Amongst the other open questions and future directions is the following problem: to inves-
tigate Hamiltonian structure of rational reductions in the context of the two-matrix [4] model,
whose partition function is a tau-function of the 2dToda system constrained by the string equa-
tion. The applicability of our study to the models of normal matrices is another interesting
aspect worthy of further analysis [6].
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