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We consider the group classification problem for the class of control systems which is de-
scribed by systems of ordinary differential equations, and we give the full group classification
for the second-order control systems.

1 Introduction

Recently there has been quite a few publications dealing with the symmetries of control systems.
Nevertheless, most of them deal with particular symmetry problems for concrete control systems.
Others in some, perhaps hidden, form attempt to solve the problem of finding symmetries for
the “general case”. It means that the problem is formulated for control systems of the form

ẋi = f i (t, x, u) , i = 1, n, t ∈ T ⊂ R+, u ∈ U
∗ ⊂ R

r, x ∈ X
∗ ⊂ R

n (1)

for arbitrary {f i(·), n, r}. Symmetry conditions for the coefficients τ , ξi, ϕj of the infinitesimal
generator of the form

X = τ(t, x, u)
∂

∂t
+ ξi(t, x, u)

∂

∂xi
+ ϕj(t, x, u)

∂

∂uj
(2)

read as

Xf i − X0ξ
i + f iX0τ = 0, Ujξ

i + f iUjτ = 0, i = 1, n, j = 1, r, (3)

where

X0 =
∂

∂t
+ f i ∂

∂xi
, Uj =

∂

∂uj
. (4)

Up to now there is no recipe for solving system (3) with arbitrary functions f i(·) and arbitrary
numbers (n, r). So, we need to fix something. Following L. Ovsiannikov’s approach, we will
describe our systems by fixing (n, r) for arbitrary f i(·) and, hence, we will consider a classical
group classification problem for some class of control systems. In the present paper we consider
the case n = 2, but before that we give some remarks on a definition of equivalence of control
systems.

2 Feedback equivalence and essential controls of control systems

Definition 1. System (1) and any system which can be derived from (1) via a diffeomorphism
t̂ = t̂(t, x), x̂ = x̂(t, x), û = û(t, x, u) are called feedback equivalent control systems.
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Based on this definition we can define also the notion of so called “essential controls”, a natural
generalization of the notion of “essential parameters” (see, for example, [2]).

Definition 2. Controls uj are called essential ones if there are no controls vk (k < r), for which
f i(t, x, u) = f̂ i(t, x, v).

Using Definitions 1 and 2 we can give the following proposition.

Proposition 1. Any control system with r essential controls is feedback equivalent to the system
of the (canonical) form

ẋ1 = f1(t, x, u),

ẋ2 = f2(t, x, u),
· · · · · · · · · · · ·
ẋn−r = fn−r(t, x, u),

ẋn−r+1 = u1,

ẋn−r+2 = u2,

· · · · · · · · · · · ·
ẋn = ur. (5)

It follows from Proposition 1 that there is only one canonical one-dimensional (n = 1) control
system ẋ = u, so the group classification of this system is trivial. Thus, we start from the case
n = 2.

3 Canonical forms for second-order control systems

Obviously (see Proposition 1), there exist only two canonical forms for second-order control
systems. One of them (with 2 controls) reads

ẋ1 = u1,

ẋ2 = u2, (6)

and the second one (with a single control) looks like

ẋ1 = F
(
t, x1, x2, u

)
,

ẋ2 = u. (7)

Of course, we ignore the case uj = 0. System (6) does not contain any arbitrary elements and
its symmetry generator is given by the direct sum Y = Y1 ⊕ Y2 ⊕ Y3 with

Y1 = τ∂t − Y0τ
(
u1∂u1 + u2∂u2

)
,

Y2 = ξ1∂x1 +
(
Y0ξ

1
)
∂u1 , Y3 = ξ2∂x2 +

(
Y0ξ

2
)
∂u2 , (8)

with τ = τ(t, x), ξi = ξi(t, x) arbitrary functions and Y0 = ∂t + u1∂u1 + u2∂u2 .

4 Controllability

Controllability (strong accessibility) is known to be directly related to the existence of invariants
(first integrals). As we can see below, controllability plays an important role in the group
properties of control systems.
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Definition 3. We call system (7) (locally) uncontrollable, if (locally) all its solutions (trajecto-
ries) lie in an invariant manifold of the form ω

(
t, x1, x2

)
= C.

Thus, the existence of such a manifold means that there exists a function ω depending on
(t, x1, x2) such that ω̇ = 0 (i.e., ω is invariant under the action of the input u).

We will now discuss for which choice of F
(
t, x1, x2, u

)
in (7) there exist such invariants. To

this end we interpret the invariant ω
(
t, x1, x2

)
= C as a nontrivial solution of the system of

partial differential equations

∂ω

∂t
+ F

(
t, x1, x2, u

) ∂ω

∂x1
+ u

∂ω

∂x2
= 0,

∂ω

∂u
= 0, (9)

where the first equation means that ω must be a first integral of system (7), and the second
condition means that this first integral must be independent of u. If we denote

X0 =
∂

∂t
+ F

(
t, x1, x2, u

) ∂

∂x1
+ u

∂

∂x2
, U =

∂

∂u
, (10)

system (9) takes the form

X0ω = 0, Uω = 0. (11)

In order to look for the functionally independent solutions of system (11), we need to calculate
the involutive closure [3] for a distribution of vector fields given as (10). We get the Lie brackets

X1 = [U, X0] = Fu
∂

∂x1
+

∂

∂x2
, X2 = [U, X1] = Fuu

∂

∂x1
,

X3 = [X0, X1] = (Fut + FFux1 + uFux2 − FuFx1 − Fx2)
∂

∂x1
. (12)

System (7) admits a first integral if for the above vector fields the two conditions U ∧X0 ∧X1 ∧
X2 = 0 and U ∧ X0 ∧ X1 ∧ X3 = 0 are fulfilled simultaneously. The first condition reads

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 F u
0 0 Fu 1
0 0 Fuu 0

∣
∣
∣
∣
∣
∣
∣
∣

= Fuu = 0, (13)

the second is
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 F u
0 0 Fu 1
0 0 Fut + FFux1 + uFux2 − FuFx1 − Fx2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (14)

Therefore, system (7) is uncontrollable if and only if the function F satisfies the following two
conditions:

Fuu = 0, Fut + FFux1 + uFux2 − FuFx1 − Fx2 = 0. (15)

One direct implication of these results is the following.

Corollary 1. System (7) is uncontrollable if and only if F = α
(
t, x1, x2

)
u + β

(
t, x1, x2

)
and

the coefficients α and β satisfy

αβx1 − βαx1 − αt + βx2 = 0.
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Example 1. The linear system

ẋ1 = a1x
1 + a2x

2 + bu,

ẋ2 = u

will be uncontrollable if and only if the condition ba1 + a2 = 0 holds true. Indeed, elimination
of u leads us to the Pfaffian equation

dx1 − bdx2 + a1

(
bx2 − x1

)
dt = 0,

which has solutions of the form

ω(t, x1, x2) =
(
bx2 − x1

)
e−a1t = C.

5 Group classification for system (7)

As we analyze a whole class of systems of the form (7), with arbitrary function F , there naturally
occurs a problem of group classification [4]: For the class of systems (7) find the kernel of basic
groups GE0 and all specializations of the arbitrary function F which allow us to extend the
basic groups.

Notice that in accordance with the terminology of the book [4], the kernel of basic groups is
the symmetry group admitted by system (7) for all specializations of the function F . Therefore,
in our case the kernel of basic groups is empty (i.e., GE0 = {0}), because the function F depends
on all variables.

Hence, we start our analysis deriving the so-called determining equations. In order to deter-
mine the coefficients τ

(
t, x1, x2, u

)
, ξi

(
t, x1, x2, u

)
, ϕ

(
t, x1, x2, u

)
of the infinitesimal symmetry

operator

X = τ
∂

∂t
+ ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
+ ϕ

∂

∂u
(16)

one needs to solve the system

Xf i − X0ξ
i + f iX0τ = 0, Uξi + f iUτ = 0, i = 1, 2, (17)

where f1 = F , f2 = u (see also [5]). Substituting

ξi = f iτ + ξ̂i (18)

in (17) we get

X̂f i − X0ξ̂
i = 0 Uξ̂i + U(f i)τ = 0, i = 1, 2, (19)

where

X̂ = ξ̂1 ∂

∂x1
+ ξ̂2 ∂

∂x2
+ ϕ

∂

∂u
.

If in (19) we replace f2 by u we obtain

ϕ = X0ξ̂
2, τ = −Uξ̂2. (20)

Now substituting (τ, ϕ) in (17) and replacing f1 by F we get

ξ̂1Fx1 + ξ̂2Fx2 + FuX0ξ̂
2 − X0ξ̂

1 = 0, U ξ̂1 − FuUξ̂2 = 0. (21)
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If we introduce

σ = ξ̂1 − Fuξ̂2, (22)

from the second equation of (21) we get

Fuuξ̂2 + σu = 0. (23)

Assuming Fuu �= 0, solve (22) and (23) for (ξ̂1, ξ̂2):

ξ̂1 = σ − FuF−1
uu σu, ξ̂2 = −F−1

uu σu. (24)

Substituting (24) in the first equation of the system (21), we finally obtain

Fuu(σt + Fσx1 + uσx2) + (FuFx1 + Fx2 − Ftu − FFux1 − uFux2)σu = FuuFx1σ. (25)

Using some substitutions, we reduced our problem to the single equation (25) for the function σ.
In accordance with the terminology of [6], this function is called the generating function of
symmetries. Indeed, if we are able to solve equation (25) for a particular specialization of the
function F then all coefficients can be calculated via

τ = U
(
F−1

uu σu

)
,

ξ1 = σ + FU
(
F−1

uu σu

) − FuF−1
uu σu,

ξ2 = uU
(
F−1

uu σu

) − F−1
uu σu,

ϕ = −X0

(
F−1

uu σu

)
,

where U = ∂u. Equation (25) is a quasi-linear inhomogeneous partial differential equation. The
corresponding system of characteristics for this equation reads as

ẋ1 = F (t, x1, x2, u),

ẋ2 = u,

u̇ = F−1
uu (FuFx1 + Fx2 − Ftu − FFux1 − uFux2),

σ̇ = Fx1σ. (26)

Thus, the problem of calculation of the point symmetries for (open loop) second-order control
systems is reduced to the problem of integration of (closed loop) system (26). Conversely, if
we know some symmetries (coefficients τ , ξ1, ξ2), we are able to give some first integral of
system (26). Indeed, converting formulas (18), (22), (24), we have

σ = ξ1 − Fuξ2 + (uFu − F )τ. (27)

Remark 1. With system (7) is associated the Pfaffian system I =
{
ω1, ω2

}
, where

ω1 = dx1 − Fdt, ω2 = dx2 − udt (28)

on a subset of R
4. With I is associated the so-called derived flag [1]. The first derived system I(1)

includes the single one-form ω:

I(1) =
{
ω = dx1 + (uFu − F )dt − Fudx2

}
. (29)

With this we are in a position to define the formula (27) in the intrinsic form

σ = X�ω. (30)

where ω is the generator of the first derived flag I(1), � the inner product, and X the symmetry
generator (16).
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The conditions (15) for uncontrollability play the role of the classification conditions for
equation (25), and if they are met the symmetry algebra is wider (see also [5] for further details).

Let us consider some examples.

Example 2. The linear time-varying system

ẋ1 = tu + x2,

ẋ2 = u

is uncontrollable. Condition (15) is fulfilled and the system has a first integral

x1 − tx2 = C.

The symmetry algebra for this system is spanned by the vector fields

X1 = γ(x1 − tx2)∂x1 ,

X2 = −σu∂t +
(
tσ − (

tu + x2
)
σu

)
∂x1 + (σ − uσu)∂x2

+
(
σtu +

(
tu + x2

)
σux1 + uσux2

)
∂u,

where γ
(
x1 − tx2

)
and σ

(
t, x1, x2, u

)
are arbitrary functions of the given arguments.

Example 3. For the system in Brunovský normal form

ẋ1 = x2,

ẋ2 = u

one has Fuu = 0. Thus, in accordance with (25), σu = 0 and σ = σ
(
t, x1, x2

)
. The infinitesimal

symmetry operator takes the form

X = −σx2∂t +
(
σ − x2σx2

)
∂x1 +

(
σt + x2σx1

)
∂x2 + X2

0 (σ)∂u,

where X0 = ∂t + x2∂x1 + u∂x2 , σ = σ
(
t, x1, x2

)
.

Example 4. For the nonlinear system

ẋ1 = u2,

ẋ2 = u

the equation FuFx1 + Fx2 − Ftu − FFux1 − uFux2 = 0 is fulfilled, so (from (25)) it follows that
X0σ = 0, and σ = σ

(
u, x1 − tu2, x2 − tu

)
. The symmetry operator is

X = σuu∂t +
(
u2σuu − 2uσu + σ

)
∂x1 + (uσuu − σu)∂x2 − (

σtu + u2σx1u + uσx2u

)
∂u.
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