The Structure of Algebras $Q_{n, \vec{\alpha}}$ Generated by Linear Connected Idempotents

Anatolii A. KYRYCHENKO

Kyiv National University of Building and Architecture, 31 Povitroflotsky Ave., Kyiv, Ukraine E-mail: akyrych@imath.kiev.ua

In the article we investigate the structure of algebras generated by linear connected idem-
potents. In particular, we proof the existence of nonsemisimple ones among such algebras. potents. In particular, we proof the existence of nonsemisimple ones among such algebras.

Algebras generated by linear connected idempotents were studied in $[1-3]$ and others. In particular, a problem of polynomial relations existence, description of algebras growth $Q_{n, \vec{\alpha}}=$ $\mathbb{C}\left\langle q_{1}, q_{2}, \ldots, q_{n} \mid q_{k}^{2}=q_{k} ; \sum_{k=1}^{n} \alpha_{k} q_{k}=e\right\rangle, n \in \mathbb{N}, \vec{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}, \forall i: \alpha_{i} \neq 0$, etc. were considered in $[2,3]$. All of algebras $Q_{n, \vec{\alpha}}$ are finite-dimensional when $n \leq 3$. Algebras $Q_{n, \vec{\alpha}}$, where $n \geq 4$, are infinite-dimensional for all $\vec{\alpha}$.

But the structure of algebras was studied insufficiently even in the finite-dimensional case (for $n=3$). In particular, the problem of the existence among such algebras of nonsemisimple ones was not investigated sufficiently.

In this article the algebra

$$
Q_{3, \vec{\alpha}}=\mathbb{C}\left\langle q_{1}, q_{2}, q_{3} \mid q_{i}^{2}=q_{i}, \alpha_{1} q_{1}+\alpha_{2} q_{2}+\alpha_{3} q_{3}=e\right\rangle,
$$

where $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \alpha_{i}>0$ is studied in detail and here is the proof of the fact that algebras $Q_{3, \vec{\alpha}}$ are nonsemisimple for $\alpha_{i}=1, \alpha_{j}+\alpha_{k}=1$.

$$
\text { Denote } A=\sum_{i=1}^{3} \alpha_{i} \text { and } M=\left\{\vec{\alpha}: A=1, A=2, \exists i: \alpha_{i}=1 \text { or } \exists i, j: \alpha_{i}+\alpha_{j}=1\right\} .
$$

Proposition 1. If $\vec{\alpha} \notin M$ then $Q_{3, \vec{\alpha}}=0$.
Proof. Since $\alpha_{k} q_{k}=e-\left(\alpha_{i} q_{i}+\alpha_{j} q_{j}\right)$ then $\alpha_{k}^{2} q_{k}=e+\alpha_{i}^{2} q_{i}+\alpha_{j}^{2} q_{j}-2 \alpha_{i} q_{i}-2 \alpha_{j} q_{j}+\alpha_{i} \alpha_{j}\left\{q_{i}, q_{j}\right\}$. After elimination q_{k} we obtain $\alpha_{k}\left(e-\alpha_{i} q_{i}-\alpha_{j} q_{j}\right)=e+\alpha_{i}^{2} q_{i}+\alpha_{j}^{2} q_{j}-2 \alpha_{i} q_{i}-2 \alpha_{j} q_{j}+\alpha_{i} \alpha_{j}\left\{q_{i}, q_{j}\right\}$. That is why $q_{j} q_{i}=\frac{1}{\alpha_{i} \alpha_{j}}\left(\left(\alpha_{k}-1\right) e+\left(2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}\right) q_{i}+\left(2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}\right) q_{j}-\alpha_{i} \alpha_{j} q_{i} q_{j}\right)$. Since $q_{j} q_{i}=q_{j}\left(q_{j} q_{i}\right)$ then

$$
\begin{align*}
q_{j} q_{i}= & \frac{1}{\alpha_{i} \alpha_{j}}\left(\left(\alpha_{k}-1+2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}\right) q_{j}+\left(2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}\right) q_{j} q_{i}-\alpha_{i} \alpha_{j}\left(q_{j} q_{i}\right) q_{j}\right), \\
q_{j} q_{i}= & \frac{1}{\alpha_{i} \alpha_{j}}\left(\left(\alpha_{k}-1+2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}\right) q_{j}+\left(2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}\right) q_{j} q_{i}\right. \\
& \left.-\left(\left(\alpha_{k}-1+2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}\right) q_{j}+\left(2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}-\alpha_{i} \alpha_{j}\right) q_{i} q_{j}\right)\right) . \tag{1}
\end{align*}
$$

From here $\left(2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}-\alpha_{i} \alpha_{j}\right)\left[q_{i}, q_{j}\right]=0$ or $-\alpha_{i}\left(\alpha_{i}+\alpha_{j}+\alpha_{k}-2\right)\left[q_{i}, q_{j}\right]=0$. Since $\vec{\alpha} \notin M$ then $\left[q_{i}, q_{j}\right]=0$ and then from (1) it follows $\left(2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}+\alpha_{k}-1+2 \alpha_{i}-\alpha_{i}^{2}-\right.$ $\left.\alpha_{i} \alpha_{k}-2 \alpha_{i} \alpha_{j}\right) q_{i} q_{j}=0$.

Since $2 \alpha_{j}-\alpha_{j}^{2}-\alpha_{j} \alpha_{k}+\alpha_{k}-1+2 \alpha_{i}-\alpha_{i}^{2}-\alpha_{i} \alpha_{k}-2 \alpha_{i} \alpha_{j}=-\left(\alpha_{i}+\alpha_{j}-1\right)\left(\alpha_{i}+\alpha_{j}+\alpha_{k}-1\right) \neq 0$, when $\alpha \notin M$, then $\forall i, j: q_{i} q_{j}=0$.

After multiplying $\alpha_{1} q_{1}+\alpha_{2} q_{2}+\alpha_{3} q_{3}=e$ by q_{i} we obtain $\alpha_{i} q_{i}=q_{i}$ or $\left(\alpha_{i}-1\right) q_{i}=0$. Since $\vec{\alpha} \notin M$ then $q_{i}=0, i=1,2,3$. So the algebra is trivial.

From the proof follows that the dimension of the algebra $Q_{3, \vec{\alpha}}$ is not more than 4 , and if $\alpha_{1}+\alpha_{2}+\alpha_{3} \neq 2$ then the algebra $Q_{3, \vec{\alpha}}$ is commutative.

Let us prove that $Q_{3, \vec{\alpha}} \neq 0$ if and only if $\vec{\alpha} \in M$ and investigate the structure of algebras $Q_{3, \vec{\alpha}}$, where $\alpha \in M$.

Theorem 1. Algebra $Q_{3, \vec{\alpha}} \neq 0$ if and only if $\vec{\alpha} \in M$ i.e. one of the conditions 1-9 is satisfied and then

1) $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$ and the algebra $Q_{3, \vec{\alpha}}$ is one-dimensional algebra;
2) $\alpha_{i}=1, \alpha_{j} \neq 1, \alpha_{k} \neq 1, \alpha_{j}+\alpha_{k} \neq 1$ and the algebra $Q_{3, \vec{\alpha}}$ is one-dimensional algebra;
3) $\alpha_{i}=\alpha_{j}=1, \alpha_{k} \neq 1$ and the algebra $Q_{3, \vec{\alpha}}$ is commutative two-dimensional semisimple algebra;
4) $\alpha_{1}=\alpha_{2}=\alpha_{3}=1$ and the algebra $Q_{3, \vec{\alpha}}$ is a commutative three-dimensional semisimple algebra;
5) $\alpha_{j}+a_{k}=1, \alpha_{i}+\alpha_{j} \neq 1, \alpha_{i}+\alpha_{k} \neq 1, \alpha_{i} \neq 1$ and the algebra $Q_{3, \vec{\alpha}}$ is commutative two-dimensional semisimple algebra;
6) $\alpha_{i}+\alpha_{j}=1, \alpha_{i}+\alpha_{k}=1, \alpha_{j}+\alpha_{k} \neq 1$ and the algebra $Q_{3, \vec{\alpha}}$ is commutative two-dimensional semisimple algebra;
7) $\alpha_{i}+\alpha_{j}=1, \alpha_{i}+\alpha_{k}=1, \alpha_{j}+\alpha_{k}=1$ that is $\alpha_{i}=\alpha_{2}=\alpha_{3}=\frac{1}{2}$ and the algebra $Q_{3, \vec{\alpha}}$ is commutative three-dimensional semisimple algebra;
8) $\alpha_{1}+\alpha_{2}+\alpha_{3}=2$ and $\forall \alpha_{i} \neq 1$ and the algebra $Q_{3, \vec{\alpha}}$ is noncommutative four-dimensional semisimple algebra;
9) $\alpha_{i}=1, \alpha_{j}+\alpha_{k}=1$ and the algebra $Q_{3, \vec{\alpha}}$ is noncommutative four-dimensional nonsemisimple algebra, the radical of the algebra is generated by $q_{j} q_{k}-q_{j}, q_{j} q_{k}-q_{k}$.

Proof. Consider only cases 8 and 9 when algebra is noncommutative.
In the case $\alpha_{1}+\alpha_{2}+\alpha_{3}=2$, where $\forall \alpha_{l} \neq 1$, the algebra $Q_{3, \vec{\alpha}}$ is generated by two idempotents q_{1} and q_{2}, so all its irreducible representations are not more than two-dimensional. Since an idempotent in one-dimensional space is equal to 0 or 1 then it is easy to prove that there are no one-dimensional representations of the algebra. Consider an irreducible representation of algebra

$$
\pi\left(q_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \pi\left(q_{2}\right)=\left(\begin{array}{cc}
z & 1 \\
z-z^{2} & 1-z
\end{array}\right), \quad \pi\left(q_{3}\right)=\left(\begin{array}{cc}
\frac{1-\alpha_{1}-\alpha_{2} z}{\alpha_{3}} & -\frac{\alpha_{2}}{\alpha_{3}} \\
\frac{\alpha_{2} z^{2}-\alpha_{2} z}{\alpha_{3}} & \frac{1+\alpha_{2} z-\alpha_{2}}{\alpha_{3}}
\end{array}\right)
$$

where $z=\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\alpha_{2} \alpha_{1}}$.
It is easy to check that from the equation $\pi\left(x_{0} e+x_{1} q_{1}+x_{2} q_{2}+x_{3} q_{1} q_{2}\right)=0$ follows $\forall l$: $x_{l}=0$. Then 1) since the dimension of the algebra is not more than 4 then elements $e, q_{1}, q_{2}, q_{1} q_{2}$ form a basis of the algebra; 2) the representation π is faithful irreducible two-dimensional representation of the algebra. That is why $Q_{3, \vec{\alpha}}$ is a noncommutative four-dimensional semisimple algebra.

Consider now $\alpha_{i}=1, \alpha_{j}+\alpha_{k}=1$. Take the representation π_{1} of algebra:

$$
\pi_{1}\left(q_{i}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad \pi_{1}\left(q_{j}\right)=\left(\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right), \quad \pi_{1}\left(q_{k}\right)=\left(\begin{array}{cc}
0 & -\frac{\alpha_{j}}{\alpha_{k}} \\
0 & 1
\end{array}\right)
$$

Since π_{1} has only one nontrivial invariant subspace then π_{1} is not irreducible but indecomposed representation of algebra. A finite-dimensional semisimple algebra has no indecomposed representations which are not irreducible. Then in this case the algebra $Q_{3, \vec{\alpha}}$ is not semisimple.

If $\alpha_{i}=1, \alpha_{j}+\alpha_{k}=1$ then $q_{i}+\alpha_{j} q_{j}+\alpha_{k} q_{k}=e$. After squaring the equality $\alpha_{j} q_{j}+\alpha_{k} q_{k}=e-q_{i}$, we obtain

$$
\alpha_{j}^{2} q_{j}+\alpha_{k}^{2} q_{k}+\alpha_{j} \alpha_{k}\left\{q_{j}, q_{k}\right\}=e-q_{i}=\alpha_{j} q_{j}+\alpha_{k} q_{k} .
$$

So $\left(\alpha_{j}^{2}-\alpha_{j}\right) q_{j}+\left(\alpha_{k}^{2}-\alpha_{k}\right) q_{k}=-\alpha_{j} \alpha_{k}\left\{q_{j}, q_{k}\right\}$.
Since $\alpha_{j}+\alpha_{k}=1$ then $a_{j} \neq 1$ and $\alpha_{k} \neq 1$ and $\alpha_{j}^{2}-\alpha_{j}=-\alpha_{j}\left(1-\alpha_{j}\right)=-\alpha_{j} \alpha_{k}=$ $-\left(1-\alpha_{k}\right) \alpha_{k}=\alpha_{k}^{2}-\alpha_{k} \neq 0$, so $q_{j}+q_{k}=\left\{q_{j}, q_{k}\right\}$ and $q_{k} q_{j}=q_{j}+q_{k}-q_{j} q_{k}$. We prove that elements $e, q_{j}, q_{k}, q_{j} q_{k}$ form a basis of the algebra. Suppose in a converse way that there exists some nontrivial linear combination of the elements that is equal to zero: $x_{0} e+x_{1} q_{j}+x_{2} q_{k}+x_{3} q_{j} q_{k}=0$.

Consider the one-dimensional representation π_{0} of the algebra: $\pi_{0}\left(q_{j}\right)=\pi_{0}\left(q_{k}\right)=0$ then $0=\pi_{0}(0)=\pi_{0}\left(x_{0} e+x_{1} q_{j}+x_{2} q_{k}+x_{3} q_{j} q_{k}\right)=x_{0} \pi_{0}(e)=x_{0}$ (hereinafter $\left.x_{0}=0\right)$.

Since $\pi_{1}\left(q_{j} q_{k}\right)=\pi_{1}\left(q_{j}\right)$ we have

$$
\pi_{1}\left(x_{0} e+x_{1} q_{j}+x_{2} q_{k}+x_{3} q_{j} q_{k}\right)=\left(\begin{array}{cc}
0 & x_{1}-\frac{\alpha_{j}}{\alpha_{k}} x_{2}+x_{3} \tag{2}\\
0 & x_{1}+x_{2}+x_{3}
\end{array}\right)=0_{2 \times 2}
$$

Define the representation π_{2} :

$$
\pi_{2}\left(q_{j}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right), \quad \pi_{2}\left(q_{k}\right)=\left(\begin{array}{cc}
0 & 0 \\
-\frac{\alpha_{j}}{\alpha_{k}} & 1
\end{array}\right) .
$$

Then $\pi_{2}\left(q_{j} q_{k}\right)=\pi_{2}\left(q_{k}\right)$ and

$$
\pi_{2}\left(x_{0} e+x_{1} q_{j}+x_{2} q_{k}+x_{3} q_{j} q_{k}\right)=\left(\begin{array}{cc}
0 & 0 \tag{3}\\
x_{1}-\frac{\alpha_{j}}{\alpha_{k}}\left(x_{2}+x_{3}\right) & x_{1}+x_{2}+x_{3}
\end{array}\right)=0_{2 \times 2}
$$

From (2) and (3) follows that

$$
\begin{aligned}
& x_{1}-\frac{\alpha_{j}}{\alpha_{k}} x_{2}+x_{3}=0, \quad x_{1}+x_{2}+x_{3}=0, \\
& x_{1}-\frac{\alpha_{j}}{\alpha_{k}} x_{3}=0, \quad x_{1}-x_{3}=0 .
\end{aligned}
$$

From here $\forall i: x_{i}=0$. We have obtained the contradiction. So $e, q_{j}, q_{k}, q_{j} q_{k}$ form the basis and the dimension of the algebra is equal to 4 .

Since the algebra is generated by two idempotents q_{j}, q_{k} then dimensions of its irreducible representations are not more than 2 . Since irreducible pair of idempotents is equivalent to the pair

$$
Q_{j}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad Q_{k}=\left(\begin{array}{cc}
z & 1 \\
z-z^{2} & 1-z
\end{array}\right)
$$

for some $z \in \mathbb{C} \backslash\{0,1\}$, then one can verify that the algebra has no two-dimensional irreducible representations. So all its irreducible representations are one-dimensional. The algebra has two one-dimensional representations: $\pi_{3}\left(q_{j}\right)=\pi_{3}\left(q_{k}\right)=0$ and $\pi_{4}\left(q_{j}\right)=\pi_{4}\left(q_{k}\right)=1$.

Let $x=x_{0} e+x_{1} q_{j}+x_{2} q_{k}+x_{3} q_{j} q_{k}$ belong to the radical of the algebra then $\pi_{3}(x)=0$, $\pi_{4}(x)=0$ or $x_{0}=0, x_{1}+x_{2}+x_{3}=0$. The system has a fundamental system of solutions $(0,1,0,-1),(0,0,1,-1)$. So elements $q_{j}-q_{j} q_{k}, q_{k}-q_{j} q_{k}$ generate the radical of algebras.
[1] Mauldon J.G., Nonorthogonal idempotents whose sum is idempotents, Amer. Math. Month., 1964, V.71, 963-973.
[2] Rabanovich V.I., Samoilenko Yu.S. and Strelets A.V., On identities in algebras $Q_{n, \lambda}$ generated by idempotents, Ukr. Math. J., 2001, V.53, N 10, 1380-1390.
[3] Rabanovich V.I., Samoilenko Yu.S. and Strelets A.V., On identities in algebras $Q_{n, \vec{\lambda}}$ generated by linear connected idempotents, Ukr. Math. J., 2004, to appear.

