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Poisson Algebras on Elliptic Curves

A. KOROVNICHENKO †, V.P. SPIRIDONOV ‡ and A.S. ZHEDANOV §

† University of Notre-Dame, Notre-Dame, USA
E-mail: okorovni@nd.edu

‡ Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia
E-mail: spiridon@thsun1.jinr.ru

§ Donetsk Institute for Physics and Technology, 83114 Donetsk, Ukraine
E-mail: zhedanov@kinetic.ac.donetsk.ua

We describe Poisson algebras associated with classical analogs of some self-dual generalized
eigenvalue problems. These algebras are related in a natural way to various elliptic curves.

1 Introduction

We work with the classical mechanical systems of one degree of freedom. Let X(q, p) and Y (q, p)
are two independent dynamical variables of canonical variables q, p with the standard Poisson
bracket {q, p} = 1. Functions X and Y are called independent if they satisfy the condition

∂(X,Y )
∂(q, p)

≡ ∂X

∂q

∂Y

∂p
− ∂X

∂p

∂Y

∂q
= {X,Y } �= 0, (1)

in some domain of interest of the phase space (q, p). Here ∂(X,Y )/∂(q, p) denotes the Jacobian
of a change of variables.

According to the definition proposed in [9], two independent variables X and Y form a clas-
sical Leonard pair (CLP) if there exist two different canonical transformations (q, p) → (x, y)
and (q, p) → (ξ, η) such that the first transformation brings X and Y to the form

X = ϕ(x), Y = A1(x)ey +A2(x)e−y +A3(x) (2)

and in the second case we have the representation

X = B1(ξ)eη +B2(ξ)e−η +B3(ξ), Y = ψ(ξ), (3)

where (x, y) and (ξ, η) are canonical pairs (i.e., {x, y} = {ξ, η} = 1) and ϕ(x), Ai(x), ψ(ξ), Bi(ξ)
are some functions. Using canonical transformations y → κy, x → x/κ and taking the limit
κ → 0 one can obtain from (2) the limiting form Y = a1(x)y2 + a2(x)y + a3(x). Therefore we
shall assume that CLP admit such degenerate forms of Y in (2) (or of X in (3)) without further
reservations.

It is convenient to introduce the variable

Z = {X,Y }. (4)

We assume that there exists a region of values of X, Y where X and Y form independent
variables, that is Z �= 0. The latter means that in this domain we can invert the changes of
variables and find x = x(X,Y ), y = y(X,Y ). As a result, we can consider Z as a function of X
and Y , Z = Z(X,Y ). The condition that X and Y form a CLP allows us to establish the explicit
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form of this function Z(X,Y ). Namely, as shown in [9] there exist 9 arbitrary constants αik,
i, k = 0, 1, 2, such that

Z2 =
2∑

i,k=0

αikX
iY k ≡ −F (X,Y ). (5)

Vice versa, it can be shown that starting from the condition (5) for arbitrary αik one arrives at
a CLP (including its degenerate form mentioned above). The condition F = 0 determines the
region of the phase space with complex values of q, p where such a consideration breaks down.

From (5) it follows that the dynamical variables X, Y and Z = {X,Y } form a Poisson algebra
with the defining relations (4) and

{Z,X} =
1
2
∂F (X,Y )

∂Y
, {Y, Z} =

1
2
∂F (X,Y )

∂X
, (6)

which are known as the classical Askey–Wilson algebra relations [6]. This Poisson algebra
generates relation (5) with the interpretation of the constant α00 as a value of the corresponding
Casimir element [9]. In this way we get a particular example of the quadratic algebras, the
most popular representative of which is given by the Sklyanin algebra [13]. In a more general
setting, algebraic relations between dynamical variables involve polynomials of generators (see,
e.g., particular polynomial quantum algebras in [14]).

Suppose that X is the Hamiltonian of some physical system. Then the first canonical trans-
formation (q, p) → (x, y) is, in fact, an action-angle transformation: it maps X into a function
depending on only one canonical variable x. Similarly, canonical transformation (q, p) → (ξ, η)
is an action-angle variables transformation for a system with the Hamiltonian Y . Existence of
a CLP can be considered as some duality property of two Hamiltonians with respect to pre-
scribed dependence on the momenta y and η of the “conjugated” Hamiltonians (i.e., Y and X,
respectively). From this point of view, the CLP property is equivalent to the notion of duality
discussed in the theory of integrable systems, see, e.g., [12, 5].

After quantization, functions e±p become shift operators and the quantum analogue of the
CLP property coincides with the standard Leonard duality [10] or the bispectrality condition [4]
for two tridiagonal N ×N matrices L,M . In this case, the matrix M is tridiagonal in the basis
formed by eigenvectors φk of the matrix L, whereas M is tridiagonal in the basis formed by
eigenvectors ψk of M :

Lφk = λkφk, Mφk = αk+1φk+1 + βkφk + γkφk−1, (7)

and

Mψk = µkψk, Lψk = ξk+1ψk+1 + ηkψk + ζkψk−1, (8)

where k = 1, 2, . . . , N. It is assumed that eigenvalues λk, µk are nondegenerate, so that the
vectors φk and ψk form two independent complete bases. In such a form the problem of classifying
all (“quantum”) Leonard pairs L,M was investigated by Terwilliger [18]. It is equivalent to the
original Leonard problem [10] in the following sense. Let us decompose the vectors ψk in the
basis of vectors φk

ψk =
N∑

s=1

Pksφs, (9)

with some expansion coefficients Pks. It follows from (7), (8) that the coefficients Pks satisfy
simultaneously two three-term recurrence relations

ζs+1Pk,s+1 + ηsPks + ξs−1Pk,s−1 = µkPks (10)
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and

γk+1Pk+1,s + βkPks + αk−1Pk−1,s = λsPks, (11)

which mean that Pks can be expressed in terms of some orthogonal polynomials of the argu-
ment λs or µk. It appears that these polynomials are self-dual: permutation of the discrete
variables k and s is equivalent to some permutation of parameters entering the recurrence coef-
ficients ηs, ξs (for details, see [10, 18,19]).

Leonard theorem [10] states that the q-Racah polynomials, discovered by Askey and Wil-
son [1], are the most general self-dual orthogonal polynomials. As shown in [19], the quantum
analog of the algebra (6) with the generators L, M and N = [L,M ] ≡ LM −ML describes
these polynomials via the representation theory (see also [18] for similar algebraic treatments).
Relations of this algebra to the standard slq(2) quantum algebra have been established in [7,8].

2 Duality for a generalized eigenvalue problem

In [15–17], a new family of discrete biorthogonal rational functions Rn(z) and Tn(z), n =
0, . . . , N − 1, has been found. These functions satisfy the property

N−1∑
s=0

wsRn(zs)Tm(zs) = hnδnm, (12)

with some weight function ws and normalization constants hn. The sequence zs is called the
“grid” and it is expressed in terms of the Jacobi theta functions. Both Rn(zs) and Tn(zs) satisfy
three term recurrence relations in the variable n and second order difference equations in s.

Let us introduce a set of N vectors Φs = (R0(zs), R1(zs), . . . , RN−1(zs))t, s = 0, . . . , N − 1.
Then there exist two tridiagonal matrices L1, L2 such that

L1Φs = zsL2Φs, (13)

where it is assumed that the matrices L1,2 act on the vector Φs in the standard manner. Similarly,
we introduce a set of N vectors Ψn = (Rn(z0), Rn(z1), . . . , Rn(zN ))t, n = 0, . . . , N − 1. Then
there exist two tridiagonal matrices M1,M2 such that

M1Ψn = λnM2Ψn, (14)

for some sequence of numbers λn (the dual “grid”). Since the functions Rn(zs) satisfy simulta-
neously two generalized eigenvalue problems (13) and (14), it is natural to consider the following
problem.

Let X and Y be two invertible N × N matrices with different eigenvalues λk and µk, k =
0, . . . , N−1. We denote as φk and ψk linearly independent eigenvectors ofX and Y , respectively:

Xφk = λkφk, Y ψk = µkψk. (15)

Now we assume that in the basis of vectors ψk the matrix X takes the form

Xψk = X−1
2 X1ψk, (16)

where X1, X2 are two tridiagonal matrices, that is

X1ψk = α
(1)
k+1ψk+1 + β

(1)
k ψk + γ

(1)
k ψk−1,

X2ψk = α
(2)
k+1ψk+1 + β

(2)
k ψk + γ

(2)
k ψk−1. (17)
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In the same way, we assume that there exist two tridiagonal matrices Y1, Y2 such that

Y φk = Y −1
2 Y1φk, (18)

with the properties

Y1φk = ξ
(1)
k+1φk+1 + η

(1)
k φk + ζ

(1)
k φk−1,

Y2φk = ξ
(2)
k+1φk+1 + η

(2)
k φk + ζ

(2)
k φk−1. (19)

The main problem of interest consists in the classification of all matrices X and Y admitting
such a representation. It implies an explicit description of algebraic structures behind this
construction that generalize the Askey–Wilson algebra. We conjecture that complete solution
of this problem yields discrete biorthogonal rational functions of [15–17]. Here we make a step
towards solution of this problem and announce some results for its classical mechanics analog.

We take two independent dynamical variables X(q, p) and Y (q, p) depending on canonical
variables q and p. Now we suppose that there exist two canonical transformations (q, p) → (x, y)
and (q, p) → (ξ, η) such that the first transformation leads to

X = ϕ(x), Y =
Y1(x, y)
Y2(x, y)

(20)

and in the second case we have

Y = ψ(ξ), X =
X1(ξ, η)
X2(ξ, η)

, (21)

where Xr, Yr, r = 1, 2, are some classical “tridiagonal functions”, that is

Xr(ξ, η) = A
(r)
1 (ξ)eη +A

(r)
2 (ξ)e−η +A

(r)
0 (ξ),

Yr(x, y) = B
(r)
1 (x)ey +B

(r)
2 (x)e−y +B

(r)
0 (x). (22)

We shall call the pair (X,Y ) satisfying such a property as generalized CLP.

3 Main results

We consider the general situation when none of the coefficients A(r)
i , B(r)

i in (22) vanishes iden-
tically. Note, however, that some of the potentials can be set constant by changes of variables.

Theorem 1. Suppose that independent variables X and Y admit representations (20) and (21)
via two canonical transformations. Then they necessarily satisfy the following quadratic equation
determining a particular elliptic curve:

Z2 + F1(X,Y )Z + F2(X,Y ) = 0, (23)

where Z ≡ {X,Y } is the Poisson bracket of X and Y ,

F2(X,Y ) =
1
4
F1(X,Y )

(
F1(X,Y ) − q2(X,Y )

)
, (24)

and

F1(X,Y ) =
2∑

i,k=0

αikX
iY k, q(X,Y ) =

1∑
i,k=0

βikX
iY k (25)

for some 13 constants αik and βik. Condition (23) is also sufficient.
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For the “grid” function ϕ(x) we obtain equation

(ϕ′(x))2 = π4(ϕ(x)), (26)

where π4(y) is a polynomial of fourth degree depending on parameters αik and βik. In the general
situation, the polynomial π4(y) is not degenerate. It is known that solution of equation (26) is
given by general elliptic function of the second order, which can be represented in the form [3]:

ϕ(x) = γ
θ1(βx+ u1)θ1(βx+ u2)
θ1(βx+ v1)θ1(βx+ v2)

, u1 + u2 = v1 + v2, (27)

where θ1(u) is the standard Jacobi theta function. Recall that the order of the elliptic function
is defined as the number of zeros or poles (counting their multiplicity) inside the fundamental
parallelogram of periods [3]. Elliptic functions of the second order are the simplest non-trivial
double-periodic meromorphic functions. Well-known examples are given by the Weierstrass
function ℘(x) and Jacobi functions sn (x), cn (x), dn (x).

The potentials A(r)
i , B(r)

i are also given by elliptic functions, but their expressions are rather
complicated and we omit them here. A proof of the above theorem will be given elsewhere.

There is an important subcase when equation (23) is reduced to the complete square:

Z =
2∑

i,k=0

αikX
iY k (28)

for some coefficients αik. This situation corresponds to symmetric, or two-diagonal representa-
tion for the variables X, Y . More exactly, we have

Theorem 2. Dynamical variables X and Y form a generalized symmetric CLP, that is they
admit representations (20) and (21) with A(r)

0 = B
(r)
0 = 0, r = 1, 2, if and only if their Poisson

bracket Z = {X,Y } takes the form (28) with arbitrary 9 coefficients αik.

We have shown that condition (23) is necessary and sufficient for the dynamical variables X
and Y to satisfy the classical analog of the generalized eigenvalue problem for two tridiagonal
matrices. The corresponding Poisson algebra takes the form

{X,Y } = Z, {Z,X} = −Z ∂Z
∂Y

, {Y, Z} = −Z ∂Z
∂X

. (29)

However, the variable Z considered as a function of X,Y is given by a root of the quadratic
equation (23). The algebra obtained after the substitution Z = (−F1 ± q

√
F1)/2 into (29) has

much less attractive form with respect to the Askey–Wilson case (6). Therefore we need to
find a simpler approach to this problem. For instance, we can try to express X, Y , Z in terms
of some other dynamical variables Ui, i = 1, 2, . . . , so that the algebra (29) is reproduced by
relatively simple Poisson algebraic relations between generators Ui.

This idea can be explained as follows. From the very beginning we have demanded that in
the picture (20) the variable Y is presented as the ratio Y = U3/U4 where both U3 and U4 are
“tridiagonal” in y. Similarly, in the dual picture (21) one should be able to representX = U1/U2,
where U1, U2 have the same tridiagonality property with respect to η. It is therefore natural to
set

X =
U1(q, p)
U2(q, p)

, Y =
U3(q, p)
U4(q, p)

and seek 4 dynamical variables U1, U2, U3, U4 such that for some canonical transformation
(q, p) → (x, y) all Ui are reduced to the tridiagonal form and, additionally, U1 = ϕ(x)U2 for
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some function ϕ(x). Similarly, there should exist a dual canonical transformation (q, p) → (ξ, η)
which reduces again all Ui to tridiagonal form and, additionally, guarantees that U3 = ψ(ξ)U4

for some function ψ(ξ). All these requirements do not bring anything new to the picture we
have considered so far. The crucial additional requirements look as follows:

i) pairwise Poisson brackets of {Ui, Uj} should be quadratic polynomials in all U1, U2, U3, U4;
ii) the linear transformations Ũ1 = m11U1 +m12U2, Ũ2 = m21U1 +m22U2 and Ũ3 = �11U3 +

�12U4, Ũ4 = �21U3 + �22U4 with two arbitrary nonsingular matrices �ij , mij do not change the
form of the Poisson algebra for Ui, that is it should be covariant with respect to such linear
fractional transformations.

In [11], some generalizations of the Sklyanin algebra were discussed. They are generated
by two polynomials Q1(U) and Q2(U) depending on four dynamical variables Ui, i = 1, . . . , 4,
whose Poisson brackets are defined in the following nice way

{Ui, Uj} = (−1)i+j det
(
∂Qk

∂Ul

)
, l �= i, j, i > j. (30)

The functions Q1, Q2 serve as Casimir elements of these algebraic relations, that is {Ui, Qk} = 0,
k = 1, 2.

In order to get quadratic Poisson algebra it is necessary to fix Q1(U) and Q2(U) as quadratic
polynomials. For example, the standard Sklyanin algebra is obtained from

Q1(U) = U2
1 + U2

2 + U2
3 ,

Q2(U) = U2
4 + J1U

2
1 + J2U

2
2 + J3U

2
3 .

We shall use this construction in order to model our classical Poisson algebraic relation (23).
We consider the case of two-diagonal representation, when

Z = {X,Y } = F (X,Y ) =
2∑

i,k=0

αikX
iY k (31)

is an arbitrary polynomial of the second degree in each variable X and Y .
Calculating Poisson bracket of X = U1/U2, Y = U3/U4 we get

Z = {X,Y } =
{U1, U3}
U2U4

+
U1U3{U2, U4}

U2
2U

2
4

− U3{U1, U4}
U2U2

4

− U1{U2, U3}
U2

2U4
. (32)

It is seen that in order to get (31) it is necessary to demand that each Poisson bracket {Ui, Uj}
in (32) contains the same variables UiUj , their adjacent pair UkUl (where k or l are not equal
to i or j) and two adjacent pairs UiUk and UlUj . These conditions can be satisfied if we choose
Casimir elements in the form

Q1(U) =
4∑

i=1

aiU
2
i + ξ1U1U2 + η1U3U4,

Q2(U) =
4∑

i=1

biU
2
i + ξ2U1U2 + η2U3U4 (33)

with arbitrary parameters ai, bi, ξm, ηm. Direct calculations show that the equality (31) is
indeed satisfied with 9 arbitrary parameters αik which are expressed through 12 parameters ai,
bi, ξm, ηm. Note that the property ii) is fulfilled, e.g. the permutation U1 ↔ U2 leads only to the
permutation of parameters a1, a2 and b1, b2 in Q1, Q2. We thus have the following statement.

Theorem 3. Any two-diagonal generalized CLP with X = U1/U2 and Y = U3/U4 can be realized
in terms of the quadratic Poisson algebra (30) with two Casimir elements given by (33).
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4 Further generalizations and perspectives

We consider now condition (23) without restriction (24), that is we assume that

F1(X,Y ) =
2∑

i,k=0

αikX
iY k, F2(X,Y ) =

4∑
i,k=0

γikX
iY k (34)

are arbitrary polynomials of degrees at most two and four with respect to both variables X
and Y . In this case, obviously, the basic properties (20) and (21) are not valid any more. Still,
relation (23) in this case generates many interesting special systems.

For example, if we set F1(X,Y ) = 0 then we have the condition

Z2 + F2(X,Y ) = 0, (35)

which generates some Poisson algebra generalizing the Askey–Wilson algebra (the latter algebra
is obtained when deg(F2) = 2). Some special cases of dynamical systems described by this
algebra (e.g., the Euler and Lagrange tops) were presented in [9]. It was observed that in all
these cases one of the dynamical variables X or Y is an elliptic function of time.

Here we present the general result.

Theorem 4. Suppose that independent dynamical variables X and Y have the following proper-
ty: if X is chosen as the Hamiltonian then Y (t) is described by an elliptic function of the second
order. Conversely, if Y is chosen as the Hamiltonian then X(t) is also an elliptic function of
the second order. Then the dynamical variables X, Y , and Z satisfy the key relation (35) with
F2(X,Y ) being an arbitrary polynomial of degree at most four with respect to each variable X
and Y .

On the one hand, this theorem can be considered as a generalization of the previous result
concerning the classical Leonard pairs [20]. On the other hand, this result provides a charac-
terization of the so-called “double-elliptic systems” [2, 11]. Examples of double-elliptic systems
described by relation (35) will be considered separately.
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[3] Erdélyi A., Magnus W., Oberhettinger F. and Tricomi F.G., Higher transcendental functions, Vol. II, New
York, McGraw-Hill, 1953.
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